【題目】已知x2是關(guān)于x的一元一次方程mx20的解,則m的值為_____

【答案】1

【解析】

根據(jù)方程的解的概念,將x=2代入原方程,得到關(guān)于m的一元一次方程,解方程可得m的值.

解:將x2代入mx20

2m20

m1

故答案為:1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,AE⊥BC于點(diǎn)E,AE=BE,DAE上的一點(diǎn),且DE=CE,連接BD,CD.

(1)試判斷BDAC的位置關(guān)系和數(shù)量關(guān)系,并說明理由;

(2)如圖2,若將△DCE繞點(diǎn)E旋轉(zhuǎn)一定的角度后,試判斷BDAC的位置關(guān)系和數(shù)量關(guān)系是否發(fā)生變化,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△OAB的頂點(diǎn)A(-2,4)在拋物線y=ax2上,將Rt△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到△OCD,邊CD與該拋物線交于點(diǎn)P,則點(diǎn)P的坐標(biāo)為( 。

A. ( ) B. (2,2) C. (,2) D. (2, )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果∠A=30°,則∠A的余角是度;如果∠1+∠2=90°,∠1+∠3=90°,那么∠2與∠3的大小關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC中,∠C=90°,AB=5,BC=3,S、Q兩點(diǎn)同時(shí)分別從A、C出發(fā),點(diǎn)S以每秒2個(gè)單位的速度沿著AC向點(diǎn)C運(yùn)動(dòng),點(diǎn)Q以每秒1個(gè)單位的速度沿著CB向點(diǎn)B運(yùn)動(dòng).當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng)

(1)求幾秒時(shí)SQ的長為2

(2)求幾秒時(shí),△SQC的面積最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象與x 軸交于點(diǎn), ,且 ,與軸的正半軸的交點(diǎn)在的下方.下列結(jié)論:① ;② ;③ ;④ .其中正確結(jié)論有_______________.(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x2(a﹣2)+4(2﹣a)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:3x-2(x+3)=6-2x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對(duì)角線AC⊥AB,OAC的中點(diǎn),經(jīng)過點(diǎn)O的直線交ADE,交BCF,連結(jié)AF、CE,現(xiàn)在添加一個(gè)適當(dāng)?shù)臈l件,使四邊形AFCE是菱形,下列條件:①OE=OA;②EF⊥AC;③AF平分∠BAC;④EAD中點(diǎn).正確的有( )個(gè).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案