在以O(shè)為坐標(biāo)原點(diǎn)的直角坐標(biāo)平面內(nèi)有一點(diǎn)A(2,4),如果AO與x軸正半軸的夾角為α,那么cosα=   
【答案】分析:本題可以利用銳角三角函數(shù)的定義、坐標(biāo)與圖形性質(zhì)以及勾股定理的知識求解.
解答:解:根據(jù)題意可得OA=2,
∴cosα==,
故答案為
點(diǎn)評:本題考查了銳角三角函數(shù)的定義、坐標(biāo)與圖形性質(zhì)以及勾股定理的知識,此題比較簡單,易于掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在斜坡A處立一旗桿AB(旗桿與水平面垂直),一小球從斜坡O點(diǎn)拋出(如圖),小球擦旗桿頂B而過,落地時撞擊斜坡的落點(diǎn)為C,已知A點(diǎn)與O點(diǎn)的距離為
5
2
米,旗桿AB高為3米,C點(diǎn)的垂精英家教網(wǎng)直高度為3.5米,C點(diǎn)與O點(diǎn)的水平距離為7米,以O(shè)為坐標(biāo)原點(diǎn),水平方向與豎直方向分別為x軸、y軸,建立直角坐標(biāo)系.
(1)求小球經(jīng)過的拋物線的解析式(小球的直徑忽略不計);
(2)H為小球所能達(dá)到的最高點(diǎn),求OH與水平線Ox之間夾角的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•峨邊縣模擬)如圖在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點(diǎn)A、B、C.
(1)請完成如下操作:
①以點(diǎn)O為坐標(biāo)原點(diǎn)、豎直和水平方向?yàn)檩S、網(wǎng)格邊長為單位長,建立平面直角坐標(biāo)系; ②根據(jù)圖形提供的信息,標(biāo)出該圓弧所在圓的圓心D,并連接AD、CD.
(2)請在(1)的基礎(chǔ)上,完成下列填空:
①寫出點(diǎn)的坐標(biāo):C
(6,2)
(6,2)
、D
(2,0)
(2,0)

②⊙D的半徑=
2
5
2
5
(結(jié)果保留根號);
③若E(7,0),試判斷直線EC與⊙D的位置關(guān)系,并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在斜坡A處立一旗桿AB(旗桿與水平面垂直),一小球從斜坡O點(diǎn)拋出(如圖),小球擦旗桿頂B而過,落地時撞擊斜坡的落點(diǎn)為C,已知A點(diǎn)與O點(diǎn)的距離為數(shù)學(xué)公式米,旗桿AB高為3米,C點(diǎn)的垂直高度為3.5米,C點(diǎn)與O點(diǎn)的水平距離為7米,以O(shè)為坐標(biāo)原點(diǎn),水平方向與豎直方向分別為x軸、y軸,建立直角坐標(biāo)系.
(1)求小球經(jīng)過的拋物線的解析式(小球的直徑忽略不計);
(2)H為小球所能達(dá)到的最高點(diǎn),求OH與水平線Ox之間夾角的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(2001•青海)在斜坡A處立一旗桿AB(旗桿與水平面垂直),一小球從斜坡O點(diǎn)拋出(如圖),小球擦旗桿頂B而過,落地時撞擊斜坡的落點(diǎn)為C,已知A點(diǎn)與O點(diǎn)的距離為米,旗桿AB高為3米,C點(diǎn)的垂直高度為3.5米,C點(diǎn)與O點(diǎn)的水平距離為7米,以O(shè)為坐標(biāo)原點(diǎn),水平方向與豎直方向分別為x軸、y軸,建立直角坐標(biāo)系.
(1)求小球經(jīng)過的拋物線的解析式(小球的直徑忽略不計);
(2)H為小球所能達(dá)到的最高點(diǎn),求OH與水平線Ox之間夾角的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年青海省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2001•青海)在斜坡A處立一旗桿AB(旗桿與水平面垂直),一小球從斜坡O點(diǎn)拋出(如圖),小球擦旗桿頂B而過,落地時撞擊斜坡的落點(diǎn)為C,已知A點(diǎn)與O點(diǎn)的距離為米,旗桿AB高為3米,C點(diǎn)的垂直高度為3.5米,C點(diǎn)與O點(diǎn)的水平距離為7米,以O(shè)為坐標(biāo)原點(diǎn),水平方向與豎直方向分別為x軸、y軸,建立直角坐標(biāo)系.
(1)求小球經(jīng)過的拋物線的解析式(小球的直徑忽略不計);
(2)H為小球所能達(dá)到的最高點(diǎn),求OH與水平線Ox之間夾角的正切值.

查看答案和解析>>

同步練習(xí)冊答案