在直角坐標(biāo)平面內(nèi),二次函數(shù)圖象的頂點(diǎn)為A(1,-4),且過(guò)點(diǎn)B(3,0).
(1)求該二次函數(shù)的解析式;
(2)將該二次函數(shù)圖象向右平移幾個(gè)單位,可使平移后所得圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)?并直接寫出平移后所得圖象與x軸的另一個(gè)交點(diǎn)的坐標(biāo).

【答案】分析:(1)有頂點(diǎn)就用頂點(diǎn)式來(lái)求二次函數(shù)的解析式;
(2)由于是向右平移,可讓二次函數(shù)的y的值為0,得到相應(yīng)的兩個(gè)x值,算出負(fù)值相對(duì)于原點(diǎn)的距離,而后讓較大的值也加上距離即可.
解答:解:(1)∵二次函數(shù)圖象的頂點(diǎn)為A(1,-4),
∴設(shè)二次函數(shù)解析式為y=a(x-1)2-4,
把點(diǎn)B(3,0)代入二次函數(shù)解析式,得:
0=4a-4,解得a=1,
∴二次函數(shù)解析式為y=(x-1)2-4,即y=x2-2x-3;

(2)令y=0,得x2-2x-3=0,解方程,得x1=3,x2=-1.
∴二次函數(shù)圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)分別為(3,0)和(-1,0),
∴二次函數(shù)圖象上的點(diǎn)(-1,0)向右平移1個(gè)單位后經(jīng)過(guò)坐標(biāo)原點(diǎn).
故平移后所得圖象與x軸的另一個(gè)交點(diǎn)坐標(biāo)為(4,0).
點(diǎn)評(píng):考查用待定系數(shù)法來(lái)求函數(shù)解析式、坐標(biāo)系里點(diǎn)的平移的特點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、在直角坐標(biāo)平面內(nèi),二次函數(shù)圖象的頂點(diǎn)為A(1,-4),且過(guò)點(diǎn)B(3,0).
(1)求該二次函數(shù)的解析式;
(2)將該二次函數(shù)圖象向右平移幾個(gè)單位,可使平移后所得圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)?并直接寫出平移后所得圖象與x軸的另一個(gè)交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)平面內(nèi),二次函數(shù)圖象的頂點(diǎn)為P(1,-4),且過(guò)點(diǎn)B(3,0)
(1)求該二次函數(shù)的解析式;
(2)若該二次函數(shù)圖象與x軸的兩個(gè)交點(diǎn)分別為A、B(A在B的左邊),求△ABP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)平面內(nèi),二次函數(shù)y=ax2+bx-3(a≠0)圖象的頂點(diǎn)為A(1,-4).
(1)求該二次函數(shù)關(guān)系式;
(2)將該二次函數(shù)圖象向上平移幾個(gè)單位,可使平移后所得圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)?并直接寫出平移后所得圖象與x軸的另一個(gè)交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、在直角坐標(biāo)平面內(nèi),二次函數(shù)的圖象頂點(diǎn)為A(1,-4),且過(guò)點(diǎn)B(3,0),求該二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)平面內(nèi),二次函數(shù)圖象的頂點(diǎn)為A(1,-4)且經(jīng)過(guò)點(diǎn)B(3,0).
(1)求該二次函數(shù)的解析式.
(2)求直線y=-x-1與該二次函數(shù)圖象的交點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案