(2006•雙柏縣)如圖,邊長為4的正方形OABC的頂點O為坐標(biāo)原點,點A在x軸的正半軸上,點C在y軸的正半軸上.動點D在線段BC上移動(不與B,C重合),連接OD,過點D作DE⊥OD,交邊AB于點E,連接OE.
(1)當(dāng)CD=1時,求點E的坐標(biāo);
(2)如果設(shè)CD=t,梯形COEB的面積為S,那么是否存在S的最大值?若存在,請求出這個最大值及此時t的值;若不存在,請說明理由.

【答案】分析:(1)求點E的坐標(biāo)就是求AE的長(E的橫坐標(biāo)就是正方形的邊長),要先求出BE的長,可根據(jù)相似三角形OCD和DBE得出關(guān)于OC,CD,BD,BE的比例關(guān)系式,然后根據(jù)正方形的邊長和CD的長,來求出BE的長,也就求出AE的長,那么就可得出E的坐標(biāo).
(2)求梯形COEB的面積,關(guān)鍵是求BE的長,方法同(1)只不過將CD=1換成了CD=t,求出BE的表達式后,那么可根據(jù)梯形的面積公式,即可得出關(guān)于S,t的二次函數(shù)式,然后根據(jù)函數(shù)的性質(zhì)即可得出函數(shù)的最大值即S的最大值以及對應(yīng)的t的值.
解答:解:(1)正方形OABC中,
∵ED⊥OD,即∠ODE=90°
∴∠CDO+∠EDB=90°,
即∠COD=90°-∠CDO,而∠EDB=90°-∠CDO,
∴∠COD=∠EDB
又∵∠OCD=∠DBE=90°
∴△CDO∽△BED,

,
得BE=,
則:AE=4-
因此點E的坐標(biāo)為(4,).

(2)存在S的最大值.
由△CDO∽△BED,
,
,BE=t-t2,S=×4×(4+t-t2)=-(t-2)2+10.
故當(dāng)t=2時,S有最大值10.
點評:本題主要考查了正方形的性質(zhì),相似三角形的判定和性質(zhì)以及二次函數(shù)的綜合應(yīng)用,根據(jù)相似三角形得出相關(guān)線段成比例來求線段的長或表達式是解題的基本思路.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年上海市普陀區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:填空題

(2006•雙柏縣)生物學(xué)家發(fā)現(xiàn)一種病毒的長度約為0.00054mm,用科學(xué)記數(shù)法表示0.00054的結(jié)果為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年云南省楚雄州雙柏縣中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•雙柏縣)閱讀下列材料,并解決后面的問題.
在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c.過A作AD⊥BC于D(如圖),則sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,
.同理有
所以…(*)
即:在一個三角形中,各邊和它所對角的正弦的比相等.
(1)在銳角三角形中,若已知三個元素a、b、∠A,運用上述結(jié)論(*)和有關(guān)定理就可以求出其余三個未知元素c、∠B、∠C,請你按照下列步驟填空,完成求解過程:
第一步:由條件a、b、∠A______∠B;
第二步:由條件∠A、∠B______∠C;
第三步:由條件____________c.
(2)如圖,已知:∠A=60°,∠C=75°,a=6,運用上述結(jié)論(*)試求b.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年云南省楚雄州雙柏縣中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•雙柏縣)青少年視力水平的下降已經(jīng)引起全社會的關(guān)注,某校為了了解初中畢業(yè)年級500名學(xué)生的視力情況,從中抽查了一部分學(xué)生視力,通過數(shù)據(jù)處理,得到如下頻率分布表和頻率分布直方圖:
請你根據(jù)給出的圖表回答:
(1)填寫頻率分布表中未完成部分的數(shù)據(jù),
(2)在這個問題中,總體是______,樣本容量是______.
(3)在頻率分布直方圖中梯形ABCD的面積是______.
(4)請你用樣本估計總體,可以得到哪些信息______.(寫一條即可)
   分組 頻數(shù) 頻率 
 3.95~4.25   2 0.04 
 4.25~4.55   6 0.12
 4.55~4.85   25 
4.85~5.15     
5.15~5.45    2  0.04
   合計  


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年云南省楚雄州雙柏縣中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•雙柏縣)如圖,AB是⊙O的直徑,CB、CE分別切⊙O于點B、D,CE與BA的延長線交于點E,連接OC、OD.
(1)△OBC與△ODC是否全等?______(填“是”或“否”);
(2)已知DE=a,AE=b,BC=c,請你思考后,選用以上適當(dāng)?shù)臄?shù),設(shè)計出計算⊙O半徑r的一種方案:
①你選用的已知數(shù)是______;
②寫出求解過程.(結(jié)果用字母表示)

查看答案和解析>>

同步練習(xí)冊答案