【題目】某賓館擁有客房90間,經(jīng)營中發(fā)現(xiàn):每天入住的客房數(shù)y(間)與房價x(元)(180≤x≤300)滿足一次函數(shù)關(guān)系,部分對應值如下表:

x(元)

200

240

270

300

y(間)

90

70

55

40


(1)求y與x之間的函數(shù)表達式;
(2)已知每間入住的客房,賓館每日需支出各種費用100元;每日空置的客房,賓館每日需支出60元,當房價為多少元時,賓館當日利潤最大?求出最大值.(賓館當日利潤=當日房費收入﹣當日支出)

【答案】
(1)解:設(shè)y=kx+b,

將(200,90)、(240,70)代入,得:

,

解得: ,

∴y=﹣ x+190


(2)解:設(shè)賓館當日利潤為W,

則W=(x﹣100)y﹣60(90﹣y)

=(x﹣100)(﹣ x+190)﹣60[90﹣(﹣ x+190)]

=﹣ x2+210x﹣13000

=﹣ (x﹣210)2+9050,

∴當x=210時,W最大=9050,

答:當房價為210元時,賓館當日利潤最大,最大利潤為9050元


【解析】(1)設(shè)一次函數(shù)的解析式為y=kx+b,然后選取表格中兩組對應值代入得到關(guān)于k、b的方程組,從而可求得k、b的值;
(2)根據(jù)“總利潤=每間客房的利潤×入住客房數(shù)量-每間空置客房的支出×空置客房數(shù)量”列出函數(shù)解析式,然后利用配方法將函數(shù)關(guān)系式變形為頂點式的性質(zhì),從而可得到函數(shù)的最大值.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形ABCD,其中AD//BC,ABBC,將DC沿DE折疊,C落于,CBG,且ABGD為長方形(如圖1);再將紙片展開,將AD沿DF折疊,使A點落在DC上一點(如圖2),在兩次折疊過程中,兩條折痕DE、DF所成的角為____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD,C D的右側(cè),BE平分∠ABC,DE平分∠ADC,BE、DE所在的直線交于點 E.∠ADC70°

1)求∠EDC 的度數(shù);

2)若∠ABC30°,求∠BED 的度數(shù);

3)將線段 BC沿 DC方向移動,使得點 B在點 A的右側(cè),其他條件不變,若∠ABC,請直接寫出∠BED 的度數(shù)(用含 n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,ADBC,CEAB,垂足分別為D、EAD、CE交于點H,請你添加一個適當?shù)臈l件:_____,使AEH≌△CEB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:2cos30°+(π﹣4)0 +|1﹣ |+( 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①所示是一個長為,寬為的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖②的方式拼成一個正方形.

1)圖②中的陰影部分的正方形的邊長等于 .(用含的代數(shù)式表示)

2)請用兩種不同的方法列代數(shù)式表示圖②中陰影部分的面積:

方法①:

方法②:

3)觀察圖②,直接寫出、、這三個代數(shù)式之間的等量關(guān)系.

4)根據(jù)(3)題中的等量關(guān)系,若,求圖②中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,動點P從點B出發(fā),沿BC,CD,DA運動到點A停止,設(shè)點P運動路程為xABP的面積為y,如果y關(guān)于x的函數(shù)圖象如圖(2)所示,則矩形ABCD的面積是( 。

A. 10B. 16C. 20D. 36

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D、F在線段AB上,點E、G分別在線段BCAC上,CDEF,∠1=∠2.

(1)判斷DGBC的位置關(guān)系,并說明理由;

(2)若DG是∠ADC的平分線,∠3=85°,且∠DCE:∠DCG=9:10,ABCD有怎樣的位置關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊中,邊厘米,若動點從點開始,按的路徑運動,且速度為1厘米/秒,設(shè)點的運動時間為秒.

1)當時,判斷的位置關(guān)系,并說明理由;

2)當的面積為面積的一半時,求的值;

3)另有一點,從點開始,按的路徑運動,且速度為厘米/秒,若、兩點同時出發(fā),當中有一點到達終點時,另一點也停止運動.當為何值時,直線的周長分成相等的兩部分.

查看答案和解析>>

同步練習冊答案