先閱讀,再回答問題:
如果x1,x2是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)根,那么x1+x2,x1x2與系數(shù)a,b,c的關(guān)系是:x1+x2=-
b
a
,x1x2=
c
a
.例如:若x1,x2是方程2x2-x-1=0的兩個(gè)根,則x1+x2=-
b
a
=-
-1
2
=
1
2
,x1x2=
c
a
=
-1
2
=-
1
2
.若x1,x2是方程2x2+x-3=0的兩個(gè)根,
(1)求x1+x2,x1x2
(2)求
x2
x1
+
x1
x2
的值.
(3)求(x1-x22
分析:(1)直接根據(jù)根與系數(shù)的關(guān)系求解;
(2)先變形得到原式=
(x1+x2)2-2x1x2
x1x2
,然后利用整體思想進(jìn)行計(jì)算;
(3)先變形得到原式=(x1-x22=(x1+x22-2x1x2,然后利用整體思想進(jìn)行計(jì)算.
解答:解:(1)根據(jù)題意得x1+x2=-
1
2
,x1•x2=-
3
2
;
(2)原式=
(x1+x2)2-2x1x2
x1x2
=
(-
1
2
)2-2×(-
3
2
)
-
3
2
=-
13
6
;
(3)原式=(x1-x22=(x1+x22-2x1x2=(-
1
2
2-2×(-
3
2
)=
1
4
+3=
13
4
點(diǎn)評(píng):本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系:若方程兩個(gè)為x1,x2,則x1+x2=-
b
a
,x1•x2=
c
a
.也考查了代數(shù)式的變形能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀,再回答問題:
如果x1,x2是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)根,那么x1+x2,x1x2與系數(shù)a,b,c的關(guān)系是:x1+x2=-
b
a
,x1x2=
c
a
.例如:若x1,x2是方程2x2-x-1=0的兩個(gè)根,則x1+x2=-
b
a
=-
-1
2
=
1
2
,x1x2=
c
a
=
-1
2
=-
1
2

(1)若x1,x2是方程2x2+x-3=0的兩個(gè)根,則x1+x2=
 
,x1x2=
 

(2)若x1,x2是方程x2+x-3=0的兩個(gè)根,求
x2
x1
+
x1
x2
的值.
解:(1)x1+x2=
 
,x1x2=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀,再回答問題:
如果x1,x2是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)根,那么x1+x2,x1x2與系數(shù)a,b,c的關(guān)系是:x1+x2=-
b
a
,x1x2=
c
a
.例如x1,x2是方程2x2-x-1=0的兩個(gè)根,則x1+x2=-
a
b
=
-1
2
=
1
2
,x1x2=
c
a
=
-1
2
=-
1
2

(1)若x1,x2是方程2x2+x-3=0的兩個(gè)根,則x1+x2=
-
1
2
-
1
2
,x1x2
-
3
2
-
3
2
;
(2)若x1,x2是方程x2+x-3=0的兩個(gè)根,求
x2
x1
+
x1
x2
的值;
(3)若x1,x2是方程x2+(4k+1)x+2k-1=0的兩個(gè)實(shí)數(shù)根,且(x1-2)(x2-2)=2k-3,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先閱讀,再回答問題:
如果x1,x2是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)根那么x1+x2,x1x2與系數(shù)a,b,c的關(guān)系是:x1+x2=-
b
a
=-
-1
2
x1x2=
c
a
=
-1
2
=-
1
2

(1)若x1,x2是方程2x2+x-3=0的兩個(gè)根,則x1+x2=-
1
2
,x1x2=-
3
2
;
(2)若x1,x2是方程x2+x-3=0的兩個(gè)根,求
x2
x1
+
x1
x2
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先閱讀,再回答問題:
因?yàn)?span dealflag="1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
12+1
=
2
,且1<
2
<2,所以
12+1
的整數(shù)部分是1;
因?yàn)?span dealflag="1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
22+2
=
6
,且2<
6
<3,所以
22+2
的整數(shù)部分是2;
因?yàn)?span dealflag="1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
32+3
=
12
,且3<
12
<4,所以
32+3
的整數(shù)部分是3.
以此類推,我們會(huì)發(fā)現(xiàn)
a2+a
的整數(shù)部分是
a
a
,理由為
a<
a2+a
<a+1
a<
a2+a
<a+1

查看答案和解析>>

同步練習(xí)冊(cè)答案