精英家教網 > 初中數學 > 題目詳情

【題目】甲、乙兩人進行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分,如圖,甲在點上正方處發(fā)出一球,羽毛球飛行的高度與水平距離之間滿足函數表達式.已知點與球網的水平距離為,球網的高度為

1)當時,的值.通過計算判斷此球能否過網.

2)若甲發(fā)球過網后,羽毛球飛行到點的水平距離為,離地面的高度為處時,乙扣球成功,求的值.

【答案】1①h=;②此球能過網,理由見解析;(2a=.

【解析】試題(1利用a=,(0,1)代入解析式即可求出h的值;利用x=5代入解析式求出y,再與1.55比較大小即可判斷是否過網;(2)將點(0,1),(7,)代入解析式得到一個二元一次方程組求解即可得出a的值.

試題解析:(1)解:①∵a=P0,1;

∴1=+h;

∴h=;

x=5代入y=得:

y==1.625;

∵1.6251.55;

此球能過網.

2)解:把(0,1),(7,)代入y=得:;

解得:;

∴a=.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在同一直角坐標系中,函數y=mx+m和函數y=mx2+2x+2(m是常數,且m≠0)的圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】八(2)班組織了一次經典朗讀比賽,甲、乙兩隊各10人的比賽成績如下表(單位:分)

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9

1)甲隊成績的中位數是    分,乙隊成績的眾數是    分;

2)計算乙隊的平均成績和方差;

3)已知甲隊成績的方差是1.4 2,則成績較為整齊的是    隊.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD的兩邊長AB=18cm,AD=4cm,點P、Q分別從A、B同時出發(fā),P在邊AB上沿AB方向以每秒2cm的速度勻速運動,Q在邊BC上沿BC方向以每秒1cm的速度勻速運動.設運動時間為x秒,PBQ的面積為y(cm2).

(1)求y關于x的函數關系式,并寫出x的取值范圍;

(2)求PBQ的面積的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小月和小東在一起探究有關多邊形內角和的問題,兩人互相出題考對方,小月給小東出了這樣的一個題目:一個四邊形的各個內角度數之比為,求各個內角的度數.小東想了想,說:這道題目有問題

1)請你指出問題出在哪里;

2)他們經過研究后,改變題目中的一個數,使這道題沒有問題,請你也嘗試一下,換一個合適的數,使這道題目沒有問題,并進行解答.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:在△ABC中,AC=BC,點D在△ABC外部,且∠ACB+ADB=180°,連接AB、CD.

(1)如圖1,當∠ACB=90°時,則∠ADC=______°.

(2)如圖2,當∠ACB=60°時,求證:DC平分∠ADB

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,點D是線段AB的中點,DCBC,作∠EAB=∠B,DEBC,連接CE.若,設BCD的面積為S,則用S表示ACE的面積正確的是(

A.B.3S

C.4SD.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,某武警部隊在一次地震搶險救災行動中,探險隊員在相距4米的水平地面A,B兩處均探測出建筑物下方C處有生命跡象,已知在A處測得探測線與地面的夾角為30°,B處測得探測線與地面的夾角為60°,求該生命跡象C所在位置的深度.(結果精確到0.1,參考數據:≈1.41,≈1.73)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】勾股定理是幾何學中的明珠,充滿著魅力,千百年來,人們對它趨之若鶩,其中有著名的數學家,也有業(yè)余數學愛好者,向常春在1994年構造發(fā)現了一個新的證法:把兩個全等的直角三角形如圖1放置,其三邊長分別為a、b、c,顯然∠DAB=∠B90°,ACDE

1)請用ab、c分別表示出梯形ABCD、四邊形AECD、EBC的面積,再通過探究這三個圖形面積之間的關系,證明:勾股定理a2+b2c2

2)如圖2,鐵路上AB兩點(看作直線上的兩點)相距40千米,C、D為兩個村莊(看作兩個點),ADAB,BCAB,垂足分別為A、B,AD24千米,BC16千米,在AB上有一個供應站P,且PCPD,求出AP的距離;

3)借助(2)的思考過程與幾何模型,直接寫出代數式的最小值為   

查看答案和解析>>

同步練習冊答案