【題目】如圖,已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),點(diǎn)P是反比例函數(shù)x的圖象上任意一點(diǎn),PA x軸于點(diǎn)A,PD y軸于點(diǎn)D,分別交反比例函數(shù)x, k的圖象于點(diǎn)B,C下列結(jié)論:①當(dāng)k時(shí),BC PAD的中位線;②不論k為何值,都有 PDA PCB;③當(dāng)四邊形ABCD的面積等于2時(shí),k ④若點(diǎn)P,將 PCB沿CB對(duì)折,使得P點(diǎn)恰好落在OA上時(shí),則;其中正確的個(gè)數(shù)有(  )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】C

【解析】

①根據(jù)反比例函數(shù)k的幾何意義,可得,兩直角三角形同底,則面積之比等于高之比,所以PA=2AB,同理可得CPD的中點(diǎn),所以BC的中位線;根據(jù)題意由三角形的面積可得PAk,再加上有一個(gè)公共角,則兩個(gè)三角形相似;先求得△PDA的面積,然后再求得△PCB的面積,根據(jù)相似三角形的面積等于相似比的平方,求得△PDA與△PCB的相似比,從而可求得k值;首先證明,求出AQ的長(zhǎng),再在直角三角形ABQ中,通過(guò)勾股定理求出k的值

連接POBO,根據(jù)題意可知:,

,即BPA中點(diǎn),同理可得CPD的中點(diǎn),

的中位線.故成立.

根據(jù)題意由三角形的面積可得PAk,

PC,.故成立.

根據(jù)題意可知,,,,

又由可知,,

6,,故成立.

如下圖,沿CB對(duì)折到,根據(jù)題意可得,

根據(jù)可知,可證明,

PA,,,在直角中,,

根據(jù)勾股定理列出關(guān)于k的方程可解得,故不成立.故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,BECD于點(diǎn)E,DFBC于點(diǎn)F

1)求證:BFDE

2)分別延長(zhǎng)BEAD,交于點(diǎn)G,若∠A45°,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,點(diǎn)B分別在y軸,x軸上,OAOB,點(diǎn)EAB的中點(diǎn),連接OE并延長(zhǎng)交反比例函數(shù)yx0)的圖象于點(diǎn)C,過(guò)點(diǎn)CCDx軸于點(diǎn)D,點(diǎn)D關(guān)于直線AB的對(duì)稱點(diǎn)恰好在反比例函數(shù)圖象上,則OEEC_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年伊始,一場(chǎng)突如其來(lái)的疫情防控戰(zhàn)在中華大地驟然打響,全國(guó)人民自覺(jué)居家減少外出,師生停課不停學(xué),舉國(guó)共抗疫情.某中學(xué)在復(fù)學(xué)后,為了了解學(xué)生們?cè)诰蛹移陂g的生活狀態(tài),以更好地保護(hù)復(fù)學(xué)后學(xué)生們的身心健康,對(duì)本校學(xué)生進(jìn)行了居家期間學(xué)習(xí)之余主要活動(dòng)的抽樣調(diào)查.種類為:(A)強(qiáng)身健體、(B)藝術(shù)熏陶、(C)經(jīng)典閱讀、(D)分擔(dān)勞動(dòng)、(E)其他.針對(duì)以上活動(dòng)種類,統(tǒng)計(jì)學(xué)生們花時(shí)間最多的種類的人數(shù),以繪制成如下兩幅不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

請(qǐng)根據(jù)圖中的信息,回答下列問(wèn)題.

1)被抽樣調(diào)查的總?cè)藬?shù)為   人;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)若該校共有學(xué)生1800人,請(qǐng)估算種類D的大約人數(shù);

4)據(jù)此疫情經(jīng)歷,給自己提出一條人生建議   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等邊的邊長(zhǎng)為3,在邊上取點(diǎn),使,連接,以為一邊作等邊,連接,則線段的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解“陽(yáng)光體育”活動(dòng)的開(kāi)展情況,從全校1000名學(xué)生中,隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查(每名學(xué)生只能從A、B、C、D中選擇一項(xiàng)自己喜歡的活動(dòng)項(xiàng)目),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖

A:踢毽子 B:乒乓球 C:籃球 D:跳繩

根據(jù)以上信息,解答下列問(wèn)題:

(1)被調(diào)查的學(xué)生共有 人,并補(bǔ)全條形統(tǒng)計(jì)圖;

2在扇形統(tǒng)計(jì)圖中,求表示區(qū)域D的扇形圓心角的度數(shù);

3)全校學(xué)生中喜歡籃球的人數(shù)大約是多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在不透明的袋子中有四張標(biāo)著數(shù)字 ,,, 的卡片,這些卡片除數(shù)字外都相同.甲同學(xué)按照一定的規(guī)則抽出兩張卡片,并把卡片上的數(shù)字相加.下圖是他所畫(huà)的樹(shù)狀圖的一部分.

(1)由上圖分析,甲同學(xué)的游戲規(guī)則是:從袋子中隨機(jī)抽出一張卡片后 (填"放回"或"不放回"),再隨機(jī)抽出一張卡片;

(2)幫甲同學(xué)完成樹(shù)狀圖;

(3)求甲同學(xué)兩次抽到的數(shù)字之和為偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABE中,∠B=90°,AB=BE,將ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°,得到AHD,過(guò)DDCBEBE的延長(zhǎng)線于點(diǎn)C,連接BH并延長(zhǎng)交DC于點(diǎn)F,連接DEBF于點(diǎn)O.下列結(jié)論:①DE平分∠HDC;②DO=OE;③HBF的中點(diǎn);④BC-CF=2CE;⑤CD=HF,其中正確的有(

A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一只不透明的袋子中裝有標(biāo)號(hào)分別為1、2、34、55個(gè)小球,這些球除標(biāo)號(hào)外都相同.

1)從袋中任意摸出一個(gè)球,摸到標(biāo)號(hào)為偶數(shù)的概率是  ;

2)先從袋中任意摸出一個(gè)球后不放回,將球上的標(biāo)號(hào)作為十位上的數(shù)字,再?gòu)拇腥我饷鲆粋(gè)球,將球上的標(biāo)號(hào)作為個(gè)位上的數(shù)字,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法求組成的兩位數(shù)是奇數(shù)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案