【題目】計算:| - |+( -1)0+2sin45°﹣2cos30°+( )﹣1 .
【答案】解:| - |+( -1)0+2sin45°﹣2cos30°+( )﹣1
= ﹣ +1+2× ﹣2× +2015
= ﹣ + ﹣ +2015
=2015.
【解析】直接利用零指數(shù)冪的性質(zhì)以及絕對值的性質(zhì)、負(fù)整數(shù)指數(shù)冪的性質(zhì)、特殊角的三角函數(shù)值分別化簡求出答案.此題主要考查了實(shí)數(shù)運(yùn)算,根據(jù)相關(guān)運(yùn)算法則正確化簡是解題關(guān)鍵.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解零指數(shù)冪法則的相關(guān)知識,掌握零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù)),以及對整數(shù)指數(shù)冪的運(yùn)算性質(zhì)的理解,了解aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線y=ax2+bx+5經(jīng)過點(diǎn)M(1,3)和N(3,5)
(1)試判斷該拋物線與x軸交點(diǎn)的情況;
(2)平移這條拋物線,使平移后的拋物線經(jīng)過點(diǎn)A(﹣2,0),且與y軸交于點(diǎn)B,同時滿足以A、O、B為頂點(diǎn)的三角形是等腰直角三角形,請你寫出平移過程,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),連接AE、BD.
(1)猜想PM與PN的數(shù)量關(guān)系及位置關(guān)系,請直接寫出結(jié)論;
(2)現(xiàn)將圖①中的△CDE繞著點(diǎn)C順時針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP、BD分別交于點(diǎn)G、H.請判斷(1)中的結(jié)論是否成立?若成立,請證明;若不成立,請說明理由;
(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫出PM與PN的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】望江中學(xué)為了了解學(xué)生平均每天“誦讀經(jīng)典”的時間,在全校范圍內(nèi)隨機(jī)抽查了部分學(xué)生進(jìn)行調(diào)查統(tǒng)計,并將調(diào)查統(tǒng)計的結(jié)果分為:每天誦讀時間t≤20分鐘的學(xué)生記為A類,20分鐘<t≤40分鐘的學(xué)生記為B類,40分鐘<t≤60分鐘的學(xué)生記為C類,t>60分鐘的學(xué)生記為D類四種.將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)m=%,n=%,這次共抽查了名學(xué)生進(jìn)行調(diào)查統(tǒng)計;
(2)請補(bǔ)全上面的條形圖;
(3)如果該校共有1200名學(xué)生,請你估計該校C類學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,對稱軸為直線x=2,且OA=OC,則下列結(jié)論:
①abc>0;②9a+3b+c<0;③c>﹣1;④關(guān)于x的方程ax2+bx+c(a≠0)有一個根為﹣
其中正確的結(jié)論個數(shù)有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°AO是△ABC的角平分線.以O(shè)為圓心,OC為半徑作⊙O.
(1)求證:AB是⊙O的切線.
(2)已知AO角⊙O于點(diǎn)E,延長AO交⊙O于點(diǎn)D,tanD= ,求 的值.
(3)在(2)的條件下,設(shè)⊙O的半徑為3,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AB=4,BC>AB,點(diǎn)D在BC上,以AC為對角線的平行四邊形ADCE中,DE的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作:小明準(zhǔn)備制作棱長為1cm的正方體紙盒,現(xiàn)選用一些廢棄的紙片進(jìn)行如下設(shè)計:
說明:
方案一:圖形中的圓過點(diǎn)A、B、C;
方案二:直角三角形的兩直角邊與展開圖左下角的正方形邊重合,斜邊經(jīng)過兩個正方形的頂點(diǎn)
紙片利用率= ×100%
發(fā)現(xiàn):
(1)方案一中的點(diǎn)A、B恰好為該圓一直徑的兩個端點(diǎn).你認(rèn)為小明的這個發(fā)現(xiàn)是否正確,請說明理由.
(2)小明通過計算,發(fā)現(xiàn)方案一中紙片的利用率僅約為38.2%.請幫忙計算方案二的利用率,并寫出求解過程.
探究:
(3)小明感覺上面兩個方案的利用率均偏低,又進(jìn)行了新的設(shè)計(方案三),請直接寫出方案三的利用率.
說明:方案三中的每條邊均過其中兩個正方形的頂點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角從標(biāo)系中,A點(diǎn)坐標(biāo)為(0,4),B點(diǎn)坐標(biāo)為(2,0),C(m,6)為反比例函數(shù) 圖象上一點(diǎn).將△AOB繞B點(diǎn)旋轉(zhuǎn)至△A′O′B處.
(1)求m的值;
(2)若O′落在OC上,連接AA′交OC與D點(diǎn).①求證:四邊形ACA′O′為平行四邊形; ②求CD的長度;
(3)直接寫出當(dāng)AO′最短和最長時A′點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com