如圖,直線y=hx+d與x軸和y軸分別相交于點(diǎn)A(-1,0),B(0,1),與雙曲線y=在第一象限相交于點(diǎn)C;以AC為斜邊、為內(nèi)角的直角三角形,與以CO為對(duì)角線、一邊在x軸上的矩形面積相等;點(diǎn)C,P在以B為頂點(diǎn)的拋物線y=上;直線y=hx+d、雙曲線y=和拋物線同時(shí)經(jīng)過兩個(gè)不同的點(diǎn)C,D

(1)確定t的值

(2)確定m , n , k的值

(3)若無論a , b , c何值,拋物線都不經(jīng)點(diǎn)P,請(qǐng)確定P坐標(biāo)(12分)

 

 

(1)2

(2)m=1 n=0 k=1

(3)符合條件的點(diǎn)P為(0,1)或(-2,5)

解析:解:

(1)直線過點(diǎn)A,B,則0=-h(huán)+d和1=d,即y=x+1.    1分

雙曲線y=經(jīng)過點(diǎn)C(x1,y1),x1y1=t.

     以AC為斜邊,∠CAO為內(nèi)角的直角三角形的面積為×y1×(1+x1);

以CO為對(duì)角線的矩形面積為x1y1,

×y1×(1+x1)=x1y1,因?yàn)閤1,y1都不等于0,故得x1=1,所以y1=2.

故有,,即t=2.     2分

(2)∵B是拋物線y=mx2+nx+k的頂點(diǎn),∴有- ,

得到n=0,k=1.   3分

∵C是拋物線y=mx2+nx+k上的點(diǎn),∴有2=m(1)2+1,得m=1.    4分

(3)設(shè)點(diǎn)P的橫坐標(biāo)為p,則縱坐標(biāo)為p2+1.

∵拋物線y=ax2+bx+c經(jīng)過兩個(gè)不同的點(diǎn)C,D,

其中求得D點(diǎn)坐標(biāo)為(-2,-1). 5分.

解法一:

故 2=a+b+c,

-1=4a-2b+c.    

解之得,b=a+1, c=1-2a. 6分

(說明:如用b表示a,c,或用c表示a,b,均可,后續(xù)參照得分)

∴y=ax2+( a+1)x+(1-2a )       

于是: p2+1≠a p2+(a+1)p+(1-2a)    7分

∴無論a取什么值都有p2-p≠(p2+p-2)a.  8分

(或者,令p2-p=(p2+p-2)a    7分

∵拋物線y=ax2+bx+c不經(jīng)過P點(diǎn),

∴此方程無解,或有解但不合題意  8分) 

故∵a≠0,∴①

解之p=0,p=1,并且p≠1,p≠-2.得p=0.   9分

∴符合題意的P點(diǎn)為(0,1). …………10分

,解之p=1,p=-2,并且p≠0,p≠1.

得p=-2.   11分

符合題意的P點(diǎn)為(-2,5). 12分

∴符合題意的P點(diǎn)有兩個(gè)(0,1)和(-2,5).

解法二:

則有(a-1)p2+(a+1) p-2a=0    7分

即〔(a-1)p+2a〕(p-1)=0

有p-1=0時(shí),得p=1,為(1,2)此即C點(diǎn),在y=ax2+bx+c上.    8分

或(a-1)p+2a=0,即(p+2)a=p

當(dāng)p=0時(shí)a=0與a≠0矛盾 9分

得點(diǎn)P(0,1)   10分

或者p=-2時(shí),無解  11分

得點(diǎn)P(-2,5) 12分

故對(duì)任意a,b,c,拋物線y=ax2+bx+c都不經(jīng)過(0,1)和(-2,5)

解法三:

如圖, 拋物線y=ax2+bx+c不經(jīng)過直線CD上除C,D外的其他點(diǎn).

(只經(jīng)過直線CD上的C,D點(diǎn)). 6分

7分

解得交點(diǎn)為C(1,2),B(0,1).

故符合題意的點(diǎn)P為(0,1).     8分

拋物線y=ax2+bx+c不經(jīng)過直線x=-2上除D外的其他點(diǎn). 9分

    10分

解得交點(diǎn)P為(-2,5).……11分

拋物線y=ax2+bx+c不經(jīng)過直線x=1上除C外的其他點(diǎn),

解得交點(diǎn)為C(1,2). ……12分

故符合條件的點(diǎn)P為(0,1)或(-2,5).

(說明:1.僅由圖形看出一個(gè)點(diǎn)的坐標(biāo)給1分,二個(gè)給2分. 2.解題過程敘述基本清楚即可)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線y=hx+d與x軸和y軸分別相交于點(diǎn)A(-1,0),B(0,1),與雙曲線y=
t
x
在第一象限相交于點(diǎn)C;以AC為斜邊、∠CAO為內(nèi)角的直角三角形,與以CO為對(duì)角線、一邊在x軸上的矩形面積相等;點(diǎn)C,P在以B為頂點(diǎn)的拋物線y=mx2+nx+k上;直線y=精英家教網(wǎng)hx+d、雙曲線y=
t
x
和拋物線y=ax2+bx+c同時(shí)經(jīng)過兩個(gè)不同的點(diǎn)C,D.
(1)確定t的值;
(2)確定m,n,k的值;
(3)若無論a,b,c取何值,拋物線y=ax2+bx+c都不經(jīng)過點(diǎn)P,請(qǐng)確定P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(07)(解析版) 題型:解答題

(2010•宜昌)如圖,直線y=hx+d與x軸和y軸分別相交于點(diǎn)A(-1,0),B(0,1),與雙曲線y=在第一象限相交于點(diǎn)C;以AC為斜邊、∠CAO為內(nèi)角的直角三角形,與以CO為對(duì)角線、一邊在x軸上的矩形面積相等;點(diǎn)C,P在以B為頂點(diǎn)的拋物線y=mx2+nx+k上;直線y=hx+d、雙曲線y=和拋物線y=ax2+bx+c同時(shí)經(jīng)過兩個(gè)不同的點(diǎn)C,D.
(1)確定t的值;
(2)確定m,n,k的值;
(3)若無論a,b,c取何值,拋物線y=ax2+bx+c都不經(jīng)過點(diǎn)P,請(qǐng)確定P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年高級(jí)中等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)卷(廣西南寧) 題型:解答題

如圖,直線y=hx+d與x軸和y軸分別相交于點(diǎn)A(-1,0),B(0,1),與雙曲線y=在第一象限相交于點(diǎn)C;以AC為斜邊、為內(nèi)角的直角三角形,與以CO為對(duì)角線、一邊在x軸上的矩形面積相等;點(diǎn)C,P在以B為頂點(diǎn)的拋物線y=上;直線y=hx+d、雙曲線y=和拋物線同時(shí)經(jīng)過兩個(gè)不同的點(diǎn)C,D

(1)確定t的值

(2)確定m , n , k的值

(3)若無論a , b , c何值,拋物線都不經(jīng)點(diǎn)P,請(qǐng)確定P坐標(biāo)(12分)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年四川瀘州天立學(xué)校初一第一學(xué)期期中數(shù)學(xué)卷 題型:解答題

如圖,直線y=hx+d與x軸和y軸分別相交于點(diǎn)A(-1,0),B(0,1),與雙曲線y=在第一象限相交于點(diǎn)C;以AC為斜邊、為內(nèi)角的直角三角形,與以CO為對(duì)角線、一邊在x軸上的矩形面積相等;點(diǎn)C,P在以B為頂點(diǎn)的拋物線y=上;直線y=hx+d、雙曲線y=和拋物線同時(shí)經(jīng)過兩個(gè)不同的點(diǎn)C,D

(1)確定t的值

(2)確定m , n , k的值

(3)若無論a , b , c何值,拋物線都不經(jīng)點(diǎn)P,請(qǐng)確定P坐標(biāo)(12分)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案