【題目】如圖,彈性小球從點(diǎn)P(0,3)出發(fā),沿所示方向運(yùn)動(dòng),每當(dāng)小球碰到矩形OABC的邊時(shí)反彈,反彈時(shí)反射角等于入射角,當(dāng)小球第1次碰到矩形的邊時(shí)的點(diǎn)為P1,第2次碰到矩形的邊時(shí)的點(diǎn)為P2,…,第n次碰到矩形的邊時(shí)的點(diǎn)為Pn,則點(diǎn)P2的坐標(biāo)是_____,點(diǎn)P2017的坐標(biāo)是_____.
【答案】(7,4), (3,0)
【解析】
根據(jù)反射角與入射角的定義作出圖形,可知每6次反彈為一個(gè)循環(huán)組依次循環(huán),用2017除以6,根據(jù)商和余數(shù)的情況確定所對(duì)應(yīng)的點(diǎn)的坐標(biāo)即可.
如圖,
經(jīng)過(guò)6次反彈后動(dòng)點(diǎn)回到出發(fā)點(diǎn)(0,3),點(diǎn)P2的坐標(biāo)是(7,4),
當(dāng)點(diǎn)P第1次碰到矩形的邊時(shí),點(diǎn)P1的坐標(biāo)為:(3,0);
∵2017÷6=336……1,
∴當(dāng)點(diǎn)P第2017次碰到矩形的邊時(shí)為第337個(gè)循環(huán)組的第1次反彈,回到出發(fā)點(diǎn)(3,0),
此時(shí)點(diǎn)P2017的坐標(biāo)為(3,0).
故答案為:(7,4),(3,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD的頂點(diǎn)在⊙O上,BD是⊙O的直徑,延長(zhǎng)CD、BA交于點(diǎn)E,連接AC、BD交于點(diǎn)F,作AH⊥CE,垂足為點(diǎn)H,已知∠ADE=∠ACB.
(1)求證:AH是⊙O的切線;
(2)若OB=4,AC=6,求sin∠ACB的值;
(3)若,求證:CD=DH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y= (n≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與x軸交于點(diǎn)C,點(diǎn)B 坐標(biāo)為(m,﹣1),AD⊥x軸,且AD=3,tan∠AOD=.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)點(diǎn)E是x軸上一點(diǎn),且△AOE是等腰三角形,請(qǐng)直接寫出所有符合條件的E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為弘揚(yáng)中華傳統(tǒng)文化,我市某中學(xué)決定根據(jù)學(xué)生的興趣愛好組建課外興趣小組,因此學(xué)校隨機(jī)抽取了部分同學(xué)的興趣愛好進(jìn)行調(diào)查,將收集的數(shù)據(jù)整理并繪制成下列兩幅統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,完成下列問題:
(1)學(xué)校這次調(diào)查共抽取了 名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,“戲曲”所在扇形的圓心角度數(shù)為 ;
(4)設(shè)該校共有學(xué)生2000名,請(qǐng)你估計(jì)該校有多少名學(xué)生喜歡書法?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過(guò)點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校組織“校園詩(shī)詞大會(huì)”,全校學(xué)生參加初賽,為了更好地了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了部分學(xué)生的成績(jī)(滿分100分),整理得到如下不完整的統(tǒng)計(jì)圖表:
組別 | 成績(jī)x分 | 頻數(shù)(人數(shù)) | 頻率 |
第1組 | 50≤x<60 | 6 | 0.12 |
第2組 | 60≤x<70 | 0.16 | |
第3組 | 70≤x<80 | 14 | a |
第4組 | 80≤x<90 | b | |
第5組 | 90≤x<100 | 10 |
請(qǐng)根據(jù)圖表中所提供的信息回答下列問題:
(1)統(tǒng)計(jì)表中a= ,b= ;
(2)請(qǐng)將統(tǒng)計(jì)圖表補(bǔ)充完整;
(3)根據(jù)調(diào)查結(jié)果,請(qǐng)估計(jì)該校1200名學(xué)生中,成績(jī)不低于80分的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中點(diǎn)A坐標(biāo)為(2,﹣4),以A為頂點(diǎn)的拋物線經(jīng)過(guò)坐標(biāo)原點(diǎn)交x軸于點(diǎn)B.
(1)求拋物線的解析式;
(2)取線段AB上一點(diǎn)D,以BD為直徑作⊙C交x軸于點(diǎn)E,作EF⊥AO于點(diǎn)F,
求證:EF是⊙C的切線;
(3)設(shè)⊙C的半徑為r,EF=m,求m與r的函數(shù)關(guān)系式及自變量r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直升機(jī)的鏡頭下,觀測(cè)牡丹園A處的俯角為30°,B處的俯角為45°,如果此時(shí)直升機(jī)鏡頭C處的高度CD為200米,點(diǎn)A、B、D在同一條直線上,則A、B兩點(diǎn)間的距離為___米.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,⊙O的切線AP與OC的延長(zhǎng)線相交于點(diǎn)P,∠P=∠BCO.
(1)求證:AC=PC;
(2)若AB=6,求AP的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com