【題目】在同一直角坐標(biāo)系中,函數(shù)y=ax2﹣b與y=ax+b(ab≠0)的圖象大致如圖(
A.
B.
C.
D.

【答案】C
【解析】解:A、由拋物線可知,a>0,由直線可知,a<0,故本選項(xiàng)錯(cuò)誤;
B、由拋物線可知a<0,由直線可知a>0,故本選項(xiàng)錯(cuò)誤;
C、由拋物線可知,a>0,b>0,由直線可知,a>0,b>0,故本選項(xiàng)正確;
D、由拋物線可知,a<0,b>0,由直線可知,a<0,b<0,故本選項(xiàng)錯(cuò)誤.
故選C.
【考點(diǎn)精析】通過靈活運(yùn)用一次函數(shù)的圖象和性質(zhì)和二次函數(shù)的圖象,掌握一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn);二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn)即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班為參加學(xué)校的大課間活動(dòng)比賽,準(zhǔn)備購進(jìn)一批跳繩,已知2根A型跳繩和1根B型跳繩共需56元,1根A型跳繩和2根B型跳繩共需82元.
(1)求一根A型跳繩和一根B型跳繩的售價(jià)各是多少元?
(2)學(xué)校準(zhǔn)備購進(jìn)這兩種型號(hào)的跳繩共50根,并且A型跳繩的數(shù)量不多于B型跳繩數(shù)量的3倍,請(qǐng)?jiān)O(shè)計(jì)書最省錢的購買方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點(diǎn)E,連接EO并延長交BC的延長線于點(diǎn)D,點(diǎn)P為BC的中點(diǎn),連接EP,AD.

(1)求證:PE是⊙O的切線;
(2)若⊙O的半徑為3,∠B=30°,求P點(diǎn)到直線AD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過邊長為1的等邊△ABC的邊AB上一點(diǎn)P,作PE⊥AC于E,Q為BC延長線上一點(diǎn),當(dāng)PA=CQ時(shí),連PQ交AC邊于D,則DE的長為( )

A. B. C. D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(方程思想)如圖,在鐵路CD同側(cè)有兩個(gè)村莊A,B,它們到鐵路的距離分別是15 km10 km,作ACCD,BDCD,垂足分別為C,D,且CD=25 km.已知鐵路旁有一個(gè)農(nóng)副產(chǎn)品收購站E,且AE=BE,CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4)

(1)請(qǐng)畫出△ABC關(guān)于原點(diǎn)對(duì)稱的△A2B2C2;并寫出各點(diǎn)的坐標(biāo).
(2)在x軸上求作一點(diǎn)P,使△PAB的周小最小,請(qǐng)畫出△PAB,并直接寫出P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2+2x+a﹣2=0.
(1)若該方程有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)該方程的一個(gè)根為1時(shí),求a的值及方程的另一根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10)如圖,△ABC中,ADBC,EF垂直平分AC,交AC于點(diǎn)F,交BC于點(diǎn)E,且BDDE,連接AE.

(1)若∠BAE40°,求∠C的度數(shù);

(2)若△ABC的周長為14cm,AC6cm,求DC長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABF中,以AB為直徑的圓分別交邊AF、BF于C、E兩點(diǎn),CD⊥AF.AC是∠DAB的平分線,

(1)求證:直線CD是⊙O的切線.
(2)求證:△FEC是等腰三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案