(2006•河北)下列運(yùn)算中,正確的是( )
A.a(chǎn)+a=a2
B.a(chǎn)•a2=a2
C.(2a)2=2a2
D.a(chǎn)+2a=3a
【答案】分析:根據(jù)整式的運(yùn)算、及冪的運(yùn)算法則.
解答:解:A、應(yīng)為a+a=2a,故本選項錯誤;
B、應(yīng)為a•a2=a1+2=a3,故本選項錯誤;
C、(2a)2=22•a2=4a2,故本選項錯誤;
D、a+2a=(1+2)a=3a,正確.
故選D.
點(diǎn)評:本題主要考查合并同類項的法則,同底數(shù)冪的乘法,積的乘方,熟練掌握運(yùn)算法則和性質(zhì)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年江蘇省蘇州市中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

(2006•河北)小明、小亮和小強(qiáng)三人準(zhǔn)備下象棋,他們約定用“拋硬幣”的游戲方式來確定哪兩個人先下棋,規(guī)則如圖:

(1)請你完成下面表示游戲一個回合所有可能出現(xiàn)的結(jié)果的樹狀圖;
(2)求一個回合能確定兩人先下棋的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年中考復(fù)習(xí)專項訓(xùn)練《概率》(解析版) 題型:解答題

(2006•河北)小明、小亮和小強(qiáng)三人準(zhǔn)備下象棋,他們約定用“拋硬幣”的游戲方式來確定哪兩個人先下棋,規(guī)則如圖:

(1)請你完成下面表示游戲一個回合所有可能出現(xiàn)的結(jié)果的樹狀圖;
(2)求一個回合能確定兩人先下棋的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2006•河北)圖1至圖7的正方形霓虹燈廣告牌ABCD都是20×20的等距網(wǎng)格(每個小方格的邊長均為1個單位長),其對稱中心為點(diǎn)O.
如圖1,有一個邊長為6個單位長的正方形EFGH的對稱中心也是點(diǎn)O,它每秒1個單位長的速度由起始位置向外擴(kuò)大(即點(diǎn)O不動,正方形EFGH經(jīng)過一秒由6×6擴(kuò)大為8×8;再經(jīng)過一秒,由8×8擴(kuò)大為10×10;…),直到充滿正方形ABCD,再以同樣的速度逐步縮小到起始時的大小,然后一直不斷地以同樣速度再擴(kuò)大、再縮。
另有一個邊長為6個單位長的正方形MNPQ從如圖1所示的位置開始,以每秒1個單位長的速度,沿正方形ABCD的內(nèi)側(cè)邊緣按A?B?C?D?A移動(即正方形MNPQ從點(diǎn)P與點(diǎn)A重合位置開始,先向左平移,當(dāng)點(diǎn)Q與點(diǎn)B重合時,再向上平移,當(dāng)點(diǎn)M與點(diǎn)C重合時,再向右平移,當(dāng)點(diǎn)N與點(diǎn)D重合時,再向下平移,到達(dá)起始位置后仍繼續(xù)按上述方式移動).
正方形EFGH和正方形MNPQ從如圖1的位置同時開始運(yùn)動,設(shè)運(yùn)動時間為x秒,它們的重疊部分面積為y個平方單位.
(1)請你在圖2和圖3中分別畫出x為2秒、18秒時,正方形EFGH和正方形MNPQ的位置及重疊部分(重疊部分用陰影表示),并分別寫出重疊部分的面積;
(2)①如圖4,當(dāng)1≤x≤3.5時,求y與x的函數(shù)關(guān)系式;
②如圖5,當(dāng)3.5≤x≤7時,求y與x的函數(shù)關(guān)系式;
③如圖6,當(dāng)7≤x≤10.5時,求y與x的函數(shù)關(guān)系式;
④如圖7,當(dāng)10.5≤x≤13時,求y與x的函數(shù)關(guān)系式.
(3)對于正方形MNPQ在正方形ABCD各邊上移動一周的過程,請你根據(jù)重疊部分面積y的變化情況,指出y取得最大值和最小值時,相對應(yīng)的x的取值情況,并指出最大值和最小值分別是多少.(說明:問題(3)是額外加分題,加分幅度為1~4分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年河北省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•河北)圖1至圖7的正方形霓虹燈廣告牌ABCD都是20×20的等距網(wǎng)格(每個小方格的邊長均為1個單位長),其對稱中心為點(diǎn)O.
如圖1,有一個邊長為6個單位長的正方形EFGH的對稱中心也是點(diǎn)O,它每秒1個單位長的速度由起始位置向外擴(kuò)大(即點(diǎn)O不動,正方形EFGH經(jīng)過一秒由6×6擴(kuò)大為8×8;再經(jīng)過一秒,由8×8擴(kuò)大為10×10;…),直到充滿正方形ABCD,再以同樣的速度逐步縮小到起始時的大小,然后一直不斷地以同樣速度再擴(kuò)大、再縮。
另有一個邊長為6個單位長的正方形MNPQ從如圖1所示的位置開始,以每秒1個單位長的速度,沿正方形ABCD的內(nèi)側(cè)邊緣按A?B?C?D?A移動(即正方形MNPQ從點(diǎn)P與點(diǎn)A重合位置開始,先向左平移,當(dāng)點(diǎn)Q與點(diǎn)B重合時,再向上平移,當(dāng)點(diǎn)M與點(diǎn)C重合時,再向右平移,當(dāng)點(diǎn)N與點(diǎn)D重合時,再向下平移,到達(dá)起始位置后仍繼續(xù)按上述方式移動).
正方形EFGH和正方形MNPQ從如圖1的位置同時開始運(yùn)動,設(shè)運(yùn)動時間為x秒,它們的重疊部分面積為y個平方單位.
(1)請你在圖2和圖3中分別畫出x為2秒、18秒時,正方形EFGH和正方形MNPQ的位置及重疊部分(重疊部分用陰影表示),并分別寫出重疊部分的面積;
(2)①如圖4,當(dāng)1≤x≤3.5時,求y與x的函數(shù)關(guān)系式;
②如圖5,當(dāng)3.5≤x≤7時,求y與x的函數(shù)關(guān)系式;
③如圖6,當(dāng)7≤x≤10.5時,求y與x的函數(shù)關(guān)系式;
④如圖7,當(dāng)10.5≤x≤13時,求y與x的函數(shù)關(guān)系式.
(3)對于正方形MNPQ在正方形ABCD各邊上移動一周的過程,請你根據(jù)重疊部分面積y的變化情況,指出y取得最大值和最小值時,相對應(yīng)的x的取值情況,并指出最大值和最小值分別是多少.(說明:問題(3)是額外加分題,加分幅度為1~4分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年河北省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•河北)小明、小亮和小強(qiáng)三人準(zhǔn)備下象棋,他們約定用“拋硬幣”的游戲方式來確定哪兩個人先下棋,規(guī)則如圖:

(1)請你完成下面表示游戲一個回合所有可能出現(xiàn)的結(jié)果的樹狀圖;
(2)求一個回合能確定兩人先下棋的概率.

查看答案和解析>>

同步練習(xí)冊答案