【題目】如圖,矩形ABCD中,AB=4,BC=6,以A、D為圓心,半徑分別為2和1畫圓,E、F分別是⊙A、⊙D上的一動點,P是BC上的一動點,則PE+PF的最小值是( )
A.5B.6C.7D.8
【答案】C
【解析】
以BC為軸作矩形ABCD的對稱圖形A′BCD′以及對稱圓D′,連接AD′交BC于P,交⊙A、⊙D′于E、F′,連接PD,交⊙D于F,EF′就是PE+PF最小值;根據(jù)勾股定理求得AD′的長,即可求得PE+PF最小值.
解:如圖,以BC為軸作矩形ABCD的對稱圖形A′BCD′以及對稱圓D′,連接AD’交BC于P,則EF′就是PE+PF最小值;
∵矩形ABCD中,AB=4,BC=6,圓A的半徑為2,圓D的半徑為1,
∴A′D′=BC=6,AA′=2AB=8,AE=2,D′F′=DF=1,
∴AD′=10,
EF′=10-2-1=7
∴PE+PF=PF′+PE=EF′=7,
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知矩形AOCB,AB=6cm,BC=16cm,動點P從點A出發(fā),以3cm/s的速度向點O運動,直到點O為止;動點Q同時從點C出發(fā),以2cm/s的速度向點B運動,與點P同時結(jié)束運動.
(1)當運動時間為2s時,P、Q兩點的距離為 cm;
(2)請你計算出發(fā)多久時,點P和點Q之間的距離是10cm;
(3)如圖2,以點O為坐標原點,OC所在直線為x軸,OA所在直線為y軸,1cm長為單位長度建立平面直角坐標系,連結(jié)AC,與PQ相交于點D,若雙曲線過點D,問k的值是否會變化?若會變化,說明理由;若不會變化,請求出k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,CA=CB,點O在△ABC的內(nèi)部,⊙O經(jīng)過B,C兩點,交AB于點D,連接CO并延長交AB于點G,以GD,GC為鄰邊作GDEC.
(1)判斷DE與⊙O的位置關(guān)系,并說明理由.
(2)若點B是的中點,⊙O的半徑為2,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.點D由點A出發(fā)沿AB方向向點B勻速運動,同時點E由點B出發(fā)沿BC方向向點C勻速運動,它們的速度均為1cm/s.連接DE,設(shè)運動時間為t(s)(0<t<10),解答下列問題:
(1)當t為何值時,△BDE的面積為7.5cm2;
(2)在點D,E的運動中,是否存在時間t,使得△BDE與△ABC相似?若存在,請求出對應(yīng)的時間t;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于60元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如下表:
售價x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達式;
(2)求售價為多少元時每天獲得利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,tanB=cos∠DAC.
(1)求證:AC=BD;
(2)若sin C=,BC=12,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC中,∠C=90°,AC=3,BC=4,若以點C為圓心,r為半徑,且⊙C與斜邊AB有唯一公共點,求半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,點D為邊AC的中點,請按下列要求作圖
并解決問題:
(1)作點D關(guān)于BC的對稱點O;
(2)在(1)的條件下,將△ABC繞點O順時針旋轉(zhuǎn)90°,
①畫出旋轉(zhuǎn)后的△EFG(其中A、B、C三點旋轉(zhuǎn)后的對應(yīng)點分別是點E、F、G);
②若∠C=a,則∠BGC= .(用含a的式子表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com