解:(1)連接OC,…
∵AB、AC是⊙O的切線,
∴∠ACO=∠ABO=90°,
在Rt△ACO和Rt△ABO中,
,
∴Rt△ACO≌Rt△ABO(HL),
∴AB=AC,∠1=∠2,
∴AO⊥BC,
∴∠AEC=90°,…
∵BD是⊙O的直徑,∴∠DCB=90°,
∴∠DCB=∠AEC,
∴CD∥AO;…
(2)∵CD∥AO,∴∠3=∠4,
∵AB是⊙O的切線,DB是直徑,
∴∠DCB=∠ABO=90°,
∴△BDC∽△AOB,…
∴
=
,即
=
,
∴y=
,…
且自變量x的取值范圍為0<x<6;…
(3)∵CD、AO的長分別為一元二次方程x
2-(4m+1)x+4m
2+2=0的兩個實(shí)數(shù)根,
∴x•y=4m
2+2,…
又由(2)知y=
,
∴xy=18,
∴4m
2+2=18,
∴m=±2,…
①當(dāng)m=2時,原方程可化為x
2-9x+18=0,∴x=3或6;
由(2)知x<6,∴只能取x=3,
∴CD=3,AO=6,
在Rt△AOB中,AO=6,OB=3,
∴AB=
=3
;…
②當(dāng)m=-2時,原方程可化為x
2+7x+18=0,
∵△=7
2-4×1÷18<0,∴方程無解,…
綜上,AB的長為
.
分析:(1)連接OC,由AB與AC都為圓的切線,根據(jù)切線的性質(zhì)AC垂直于OC,AB與OB垂直,根據(jù)垂直的定義得到兩個角為直角,在直角三角形ACO與直角三角形ABO中,由OC=OB,OA為公共邊,利用HL得出三角形ACO與三角形ABO全等,根據(jù)全等三角形的對應(yīng)邊及對應(yīng)角相等得到AB=AC,∠1=∠2,根據(jù)三線合一得到AO與BC垂直,又BD為圓O的直徑,根據(jù)直徑所對的圓周角為直角,得到CD與BC垂直,可得出DC與AO都與BC垂直,則AO平行于CD,得證;
(2)由第一問得到CD與AO平行,根據(jù)兩直線平行同位角相等可得出∠3=∠4,再由一對直角相等,利用兩對對應(yīng)角相等的兩三角形相似,可得出三角形BDC與三角形ABO相似,根據(jù)相似得比例,將各自的邊長代入即可得出y與x的關(guān)系式,并根據(jù)直徑為6,圓中的弦長小于等于直徑可得出x的取值范圍;
(3)由CD、AO的長分別為一元二次方程x
2-(4m+1)x+4m
2+2=0的兩個實(shí)數(shù)根,根據(jù)根與系數(shù)的關(guān)系表示出xy,根據(jù)第二問得出的y與x的關(guān)系式得到xy=18,列出關(guān)于m的方程,求出方程的解得到m的值,將m的值代入原方程,求出方程的解,可得出CD及AO的值,由CD=OB得出OB的長,在直角三角形ABO中,由AO及OB的長,利用勾股定理即可求出AB的長.
點(diǎn)評:此題考查了切線的性質(zhì),圓周角定理,等腰三角形的性質(zhì),平行線的判定,全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理,以及根與系數(shù)的關(guān)系,是一道綜合性較強(qiáng)的題,要求學(xué)生掌握知識要全面.