精英家教網 > 初中數學 > 題目詳情
如圖,已知∠AOB=90°,∠AOC=60°,OD平分∠BOC,OE平分∠AOC.
(1)求∠DOE的度數.
(2)如果原題中∠AOC=60°改為∠AOC是銳角,能否求出∠DOE?若能求出來;若不能,說明理由.
分析:(1)首先計算出∠BOC的度數,再根據角平分線的性質可得∠BOD,∠EOC,進而根據角的和差關系算出∠DOE的度數;
(2)不能計算出∠BOC的度數,因此也算不出∠DOB和∠EOC,進而也算不出∠DOE的度數.
解答:解:(1)∵OD平分∠BOC,
∴∠DOC=∠BOD=
1
2
∠BOC,
∵∠AOB=90°,∠AOC=60°,
∴∠BOC=150°,
∴∠DOB=∠DOC=75°,
∵OE平分∠AOC,
∴∠EOC=
1
2
∠AOC=30°,
∴∠DOE=150°-75°-30°=45°;

(2)不能.
因為只知道∠AOB=90°,不知道∠AOC的度數,就不能計算出∠BOC的度數,因此也算不出∠DOE.
點評:此題主要考查了角的計算,以及角的平分線定義,關鍵是掌握角平分線的定義:從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線叫做這個角的平分線.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

19、(1)如圖,已知∠AOB和C、D兩點,用直尺和圓規(guī)作一點P,使PC=PD,且P到OA、OB兩邊距離相等.

(2)用三角尺作圖在如圖的方格紙中,
①作△ABC關于直線l1對稱的△A1B1C1;再作△A1B1C1關于直線l2對稱的△A2B2C2;再作△A2B2C2關于直線l3對稱的△A3B3C3
②△ABC與△A3B3C3成軸對稱嗎?如果成,請畫出對稱軸;如果不成,把△A3B3C3怎樣平移可以與△ABC成軸對稱?

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知∠AOB是直角,∠AOC是銳角,ON平分∠AOC,OM平分∠BOC,則∠MON是( 。精英家教網
A、45°
B、45°+
1
2
∠AOC
C、60°-
1
2
∠AOC
D、不能計算

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.
(1)求∠EOF的度數;
(2)若∠AOC=x°,∠EOF=y°.則請用x的代數式來表示y;
(3)如果∠AOC+∠EOF=156°,則∠EOF是多少度?

查看答案和解析>>

科目:初中數學 來源: 題型:

尺規(guī)作圖:
如圖,已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB(不用寫作法,保留作圖痕跡).并證明你所作圖的正確性.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知∠AOB=x(0°<x<180°),OC平分∠AOB,點N為OB上一個定點.通過畫圖可以知道:當∠AOB=45°時,在射線OC上存在點P,使△ONP成為等腰三角形,且符合條件的點有三個,即P1(頂點為P2),P2(頂點為0),P3(頂點為N).
試問:當∠AOB分別為銳角、直角、鈍角時,在射線OC上使△ONP成為等腰三角形的點P是否仍然存在三個?請分別畫出簡圖并加以說明.

查看答案和解析>>

同步練習冊答案