【題目】關于二次函數y=2x2﹣mx+m﹣2,以下結論:
①拋物線交x軸有交點;
②不論m取何值,拋物線總經過點(1,0);
③若m>6,拋物線交x軸于A、B兩點,則AB>1;
④拋物線的頂點在y=﹣2(x﹣1)2圖象上.其中正確的序號是( 。
A. ①②③④ B. ①②③ C. ①②④ D. ②③④
【答案】A
【解析】二次函數y=2x2-mx+m-2,
∵a=2,b=-m,c=m-2,
∴b2-4ac=(-m)2-8(m-2)=(m-4)2≥0,
則拋物線與x軸有交點,故①正確;
∵當x=1時,y=2-m+m-2=0,
∴不論m取何值,拋物線總經過點(1,0),故②正確;
設A的坐標為(x1,0),B(x2,0),
令y=0,得到2x2-mx+m-2=0,
∴x1+x2=,x1x2=,
∴AB=|x1-x2|=|,
當m>6時,可得m-4>2,即>1,
∴AB>1,故③正確;
∵拋物線的頂點坐標為(, ),
∴將x=代入得:y=-2(-1)2=-2()=,
∴拋物線的頂點坐標在y=-2(x-1)2圖象上,故④正確,
綜上,正確的序號有①②③④,
故選A.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC≌△ADE,已知點C和點E是對應點,BC的延長線分別交AD,DE于點F,G,且∠DAC=10°,∠B=∠D=25°,∠EAB=120°,試求∠DFB和∠DGB的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為響應環(huán)保組織提出的“低碳生活”的號召,李明決定不開汽車而改騎自行車上班.有一天,李明騎自行車從家里到工廠上班,途中因自行車發(fā)生故障,修車耽誤了一段時間,車修好后繼續(xù)騎行,直至到達工廠(假設在騎自行車過程中勻速行駛).李明離家的距離(米)與離家時間(分鐘)的關系表示如下圖:
(1)李明從家出發(fā)到出現故障時的速度為 米/分鐘;
(2)李明修車用時 分鐘;
(3)求線段BC所對應的函數關系式(不要求寫出自變量的取值范圍).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC的角平分線CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列結論:①∠CEG=2∠DCB;②∠DFB=∠CGE;③∠ADC=∠GCD;④CA平分∠BCG.其中正確的結論是_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,反比例函數y=的圖象上,點A是該圖象第一象限分支上的動點,連結AO并延長交另一支于點B,以AB為斜邊作等腰直角△ABC,頂點C在第四象限,AC與x軸交于點P,連結BP,在點A運動過程中,當BP平分∠ABC時,點A的坐標為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知三角形紙片(如圖),將紙片折疊,使點與點重合,折痕分別與邊,交于點、,點關于直線的對稱點為點,聯結.
(1)根據題意作出圖形:
(2)如果,求的度數;
(3)如果,的面積為8,求的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將坐標原點O沿x軸向左平移2個單位長度得到點A,過點A作y軸的平行線交反比例函數y=的圖象于點B,AB=.
(1)求反比例函數的解析式;
(2)若P(x1,y1)、Q(x2,y2)是該反比例函數圖象上的兩點,且x1<x2時,y1>y2,指出點P、Q各位于哪個象限?并簡要說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=mx2﹣7mx+3與y軸交于點A,與x軸分別交于點B(1,0).點C(x2,0),過點A作直線AD∥x軸,與拋物線交于點D,在x軸上有一動點E(t,0),過點E作直線l∥y軸,與拋物線交于點P,與直線AD交于點Q.
(1)求拋物線的解析式及點C的坐標;
(2)當0<t≤7時,求△APC面積的最大值;
(3)當t>1時,是否存在點P,使以A、P、Q為頂點的三角形與△AOB相似?若存在,求出此時t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把矩形OABC放入平面直角坐標系xO中,使OA、OC分別落在x、y軸的正半軸上,其中AB=15,對角線AC所在直線解析式為y=﹣x+b,將矩形OABC沿著BE折疊,使點A落在邊OC上的點D處.
(1)求點B的坐標;
(2)求EA的長度;
(3)點P是y軸上一動點,是否存在點P使得△PBE的周長最小,若存在,請求出點P的坐標,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com