【題目】快、慢兩車分別從相距180千米的甲、乙兩地同時出發(fā),沿同一路線勻速行駛,相向而行,快車到達乙地停留一段時間后,按原路原速返回甲地.慢車到達甲地比快車到達甲地早小時,慢車速度是快車速度的一半,快、慢兩車到達甲地后停止行駛,兩車距各自出發(fā)地的路程y(千米)與所用時間x(小時)的函數(shù)圖象如圖所示,請結(jié)合圖象信息解答下列問題:

1)請直接寫出快、慢兩車的速度;

2)求快車返回過程中y(千米)與x(小時)的函數(shù)關(guān)系式;

3)兩車出發(fā)后經(jīng)過多長時間相距90千米的路程?

【答案】(1)快車、慢車速度分別為120千米/,60千米/;(2y=120x+4202x);(3兩車出發(fā)后經(jīng)過小時相距90千米的路程

【解析】試題分析:(1)根據(jù)路程與相應(yīng)的時間,求得慢車的速度,再根據(jù)慢車速度是快車速度的一半,求得快車速度;
(2)先求得點C的坐標(biāo),再根據(jù)點D的坐標(biāo),運用待定系數(shù)法求得CD的解析式;
(3)分三種情況:在兩車相遇之前;在兩車相遇之后;在快車返回之后,分別求得時間即可.

試題解析:

1)快車速度:180×2÷=120千米/時,

慢車速度:120÷2=60千米/時;

2)快車停留的時間:×2=(小時),

+=2(小時),即C2180),

設(shè)CD的解析式為:y=kx+b,則

C2,180),D,0)代入,得

,

解得,

∴快車返回過程中y(千米)與x(小時)的函數(shù)關(guān)系式為y=﹣120x+4202x);

3)相遇之前:120x+60x+90=180

解得x=;

相遇之后:120x+60x﹣90=180,

解得x=;

快車從甲地到乙地需要180÷120=小時,

快車返回之后:60x=90+120x﹣

解得x=

綜上所述,兩車出發(fā)后經(jīng)過小時相距90千米的路程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】單項式﹣x6y的系數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB90°BOC60°,射線OM平分∠AOC,ON平分∠BOC

1)求∠MON的度數(shù);

2)如果(1)中,∠AOBα,BOCββ為銳角),其他條件不變,求∠MON的度數(shù);

3)從(1)、(2)的結(jié)果中,你能得到什么規(guī)律?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級學(xué)生會為了解本年級600名學(xué)生的睡眠情況,將同學(xué)們某天的睡眠時長t(小時)分為A,BCD,EA9t24B8t9;C7t8;D6t7;E0t6)五個選項,進行了一次問卷調(diào)查,隨機抽取n名同學(xué)的調(diào)查問卷并進行了整理,繪制成如下條形統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的信息解答下列問題:

1)求n的值;

2)根據(jù)統(tǒng)計結(jié)果,估計該年級600名學(xué)生中睡眠時長不足7小時的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠A=110°,點E是菱形ABCD內(nèi)一點,連結(jié)CE繞點C順時針旋轉(zhuǎn)110°,得到線段CF,連結(jié)BEDF,若∠E=86°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,邊長為6的正方形OABC的頂點AC分別在x軸和y軸的正半軸上,直線y=mx+2OCBC兩邊分別相交于點D,G,以DG為邊作菱形DEFG,頂點EOA邊上.

1)如圖1,頂點F在邊AB上,當(dāng)CG=OD時,

m的值;

菱形DEFG是正方形嗎?如果是請給予證明.

2)如圖2,連接BF,設(shè)CG=a,△FBG的面積為S,求Sa的函數(shù)關(guān)系式;

3)如圖3,連接GE,當(dāng)GD平分∠CGE時,請直接寫出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x=5是方程ax8=12的解,則a的值為(  )

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知2A型車和1B型車載滿貨物一次可運貨10.1A型車和2B型車載滿貨物一次可運貨11.某物流公司現(xiàn)有31噸貨物,計劃同時租用A型車a輛和B型車b,一次運完,且每輛車都滿載貨物.根據(jù)以上信息解答下列問題:

11A型車和1B型車載滿貨物一次分別可運貨物多少噸?

2請幫助物流公司設(shè)計租車方案

3A型車每輛車租金每次100元,B型車每輛車租金每次120.請選出最省錢的租車方案,并求出最少的租車費.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l1的解析式為y=-x直線l2與l1交于A點(a,-a)與,與y軸交于點B0,b,其中a,b滿足a+22+=0 .

(1)求直線l2放入解析式;

(2)在平面直角坐標(biāo)系中第二象限有一點P(m,5),使得SAOP=SAOB,請求出點P的坐標(biāo);

(3)已知平行于y軸且位于y軸左側(cè)有一動直線,分別與, 交于點M、N,且點M在點N的下方,點Q為y軸上一動點,且MNQ為等腰直角三角形,請直接寫出滿足條件的點Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案