【題目】如圖,已知直線AQ與x軸負(fù)半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)Q,∠QAO=45°,直線AQ在y軸上的截距為2,直線BE:y=-2x+8與直線AQ交于點(diǎn)P.
(1)求直線AQ的解析式;
(2)在y軸正半軸上取一點(diǎn)F,當(dāng)四邊形BPFO是梯形時(shí),求點(diǎn)F的坐標(biāo).
(3)若點(diǎn)C在y軸負(fù)半軸上,點(diǎn)M在直線PA上,點(diǎn)N在直線PB上,是否存在以Q、C、M、N為頂點(diǎn)的四邊形是菱形,若存在請(qǐng)求出點(diǎn)C的坐標(biāo);若不存在請(qǐng)說(shuō)明理由.
【答案】(1)直線AQ的解析式為y=x+2;(2)F(0,4);(3)存在,C(0,)或C(0,-10)
【解析】
(1)利用待定系數(shù)法即可求出直線AQ的解析式;
(2)先求出直線AQ和直線BE的交點(diǎn)P的坐標(biāo),由PF∥x軸可知F橫坐標(biāo)為0,縱坐標(biāo)與點(diǎn)P的縱坐標(biāo)相等;
(3)分CQ為菱形的對(duì)角線與CQ是菱形的一條邊兩種情況討論.
解:(1)設(shè)直線AQ的解析式為y=kx+b,
∵直線AQ在y軸上的截距為2,
∴b=2,
∴直線AQ的解析式為y=kx+2,
∴OQ=2,
在Rt△AOQ中,∠OAQ=45°,
∴OA=OQ=2,
∴A(-2,0),
∴-2k+2=0,
∴k=1,
∴直線AQ的解析式為y=x+2;
(2)由(1)知,直線AQ的解析式為y=x+2①,
∵直線BE:y=-2x+8②,
聯(lián)立①②解得,
∴P(2,4),
∵四邊形BPFO是梯形,
∴PF∥x軸,
∴F(0,4);
(3)設(shè)C(0,c),
∵以Q、C、M、N為頂點(diǎn)的四邊形是菱形,
①當(dāng)CQ是對(duì)角線時(shí),CQ與MN互相垂直平分,
設(shè)C(0,c),
∵CQ的中點(diǎn)坐標(biāo)為(0,),
∴點(diǎn)M,N的縱坐標(biāo)都是,
∴M(,),N(,),
∴+=0,
∴c=-10,
∴C(0,-10),
②當(dāng)CQ為邊時(shí),CQ∥MN,CQ=MN=QM,
設(shè)M(m,m+2),
∴N(m,-2m+8),
∴|3m-6|=2-c=|m|,
∴m=或m=,
∴c=或c=(舍),
∴,
∴(0,)或C(0,-10).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AB=3,BC=4,將△ABC折疊,使點(diǎn)B恰好落在邊AC上,與點(diǎn)B′重合,AE為折痕,則EB′= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=30°,OP平分∠AOB,PC⊥OB于點(diǎn)C.若OC=2,則PC的長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車銷售公司經(jīng)銷某品牌A款汽車,隨著汽車的普及,其價(jià)格也在不斷下降.今年5月份A款汽車的售價(jià)比去年同期每輛降價(jià)1萬(wàn)元,如果賣出相同數(shù)量的A款汽車,去年銷售額為100萬(wàn)元,今年銷售額只有90萬(wàn)元.
(1)今年5月份A款汽車每輛售價(jià)多少萬(wàn)元?
(2)為了增加收入,汽車銷售公司決定再經(jīng)銷同品牌的B款汽車,已知A款汽車每輛進(jìn)價(jià)為7.5萬(wàn)元,B款汽車每輛進(jìn)價(jià)為6萬(wàn)元,公司預(yù)計(jì)用不多于105萬(wàn)元且不少于99萬(wàn)元的資金購(gòu)進(jìn)這兩款汽車共15輛,有幾種進(jìn)貨方案?
(3)如果B款汽車每輛售價(jià)為8萬(wàn)元,為打開(kāi)B款汽車的銷路,公司決定每售出一輛B款汽車,返還顧客現(xiàn)金a萬(wàn)元,要使(2)中所有的方案獲利相同,a值應(yīng)是多少?此時(shí),哪種方案對(duì)公司更有利?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】填空,完成下列說(shuō)理過(guò)程
如圖,點(diǎn)A,O,B在同一條直線上,OD,OE分別平分∠AOC和∠BOC.
(1)求∠DOE的度數(shù);
(2)如果∠COD=65°,求∠AOE的度數(shù).
解:(1)如圖,因?yàn)?/span>OD是∠AOC的平分線,
所以∠COD=∠AOC.
因?yàn)?/span>OE是∠BOC的平分線,
所以∠COE= .
所以∠DOE=∠COD+ =(∠AOC+∠BOC)=∠AOB= °.
(2)由(1)可知
∠BOE=∠COE= ﹣∠COD= °.
所以∠AOE= ﹣∠BOE= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
在數(shù)軸上2與﹣1所對(duì)的兩點(diǎn)之間的距離:|2﹣(﹣1)|=3;
在數(shù)軸上﹣2與3所對(duì)的兩點(diǎn)之間的距離:|﹣2﹣3|=5;
在數(shù)軸上﹣3與﹣1所對(duì)的兩點(diǎn)之間的距離:|(﹣1)﹣(﹣3)|=2
歸納:在數(shù)軸上點(diǎn)A、B分別表示數(shù)a、b,則A、B兩點(diǎn)之間的距離AB=|a﹣b|或|b﹣a|
回答下列問(wèn)題:
(1) 數(shù)軸上表示數(shù)x和1的兩點(diǎn)之間的距離表示為 ;數(shù)軸上表示數(shù)x和 的兩點(diǎn)之間的距離表示為|x+2|;
(2)請(qǐng)你在草稿紙上畫出數(shù)軸,當(dāng)表示數(shù)x的點(diǎn)在﹣2與3之間移動(dòng)時(shí),|x﹣3|+|x+2|的值總是一個(gè)固定的值為: .
(3)繼續(xù)請(qǐng)你在草稿紙上畫出數(shù)軸,探究當(dāng)x=_______時(shí),|x-3|+|x+2|=7.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,G 為 BC 的中點(diǎn),且 DG⊥BC,DE⊥AB 于 E,DF⊥AC 于 F, BE=CF.
(1)求證:AD 是∠BAC 的平分線;
(2)如果 AB=8,AC=6,求 AE 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠B=65°,∠BAD=40°,∠AED=100°,∠CDE=45°,求∠CAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知射線 DM與直線AB交于點(diǎn)A,線段EC與直線AB交于點(diǎn)C,AB∥DE.
(1)當(dāng)∠MAC=100°,∠BCE=120°時(shí),把EC繞點(diǎn)E旋轉(zhuǎn)多大角度(所求角度小于180°)時(shí),可判定MD∥EC?請(qǐng)你設(shè)計(jì)出兩種方案,并畫出草圖;
(2)若將EC繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)60°時(shí),點(diǎn)C與點(diǎn)A恰好重合,請(qǐng)畫出草圖,并在圖中找出同位角、內(nèi)錯(cuò)角各兩對(duì)(先用數(shù)字標(biāo)出角,再回答).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com