如圖,鉛球運動員擲鉛球的高度y(m)與水平距離x(m)之間的函數(shù)關(guān)系式是y=-x2+x+,則該運動員此次擲鉛球,鉛球出手時的高度為              .
.

試題分析:先配方,得
y=-x2+x+
=-(x-8x)+
=-(x-4)2+×16+
=-(x-4)2+
鉛球運動員出手時,求高度,即求x=0時,y的取值,y=-(0-4)2+=.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

拋物線y=-x2+(m-1)x+m與y軸交于點(0,3).

(1)求拋物線的解析式;
(2)求拋物線與x軸的交點坐標;
(3)畫出這條拋物線大致圖象;
(4)根據(jù)圖象回答:
①當x取什么值時,y>0 ?
②當x取什么值時,y的值隨x的增大而減?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,已知二次函數(shù)的圖像經(jīng)過原點及點A(1,2),與x軸相交于另一點B.

(1)求:二次函數(shù)的解析式及B點坐標;
(2)若將拋物線為對稱軸向右翻折后,得到一個新的二次函數(shù),已知二次函數(shù)與x軸交于兩點,其中右邊的交點為C點.點P在線段OC上,從O點出發(fā)向C點運動,過P點作x軸的垂線,交直線AO于D點,以PD為邊在PD的右側(cè)作正方形PDEF(當P點運動時,點D.點E、點F也隨之運動);
①當點E在二次函數(shù)y1的圖像上時,求OP的長.
②若點P從O點出發(fā)向C點做勻速運動,速度為每秒1個單位長度,同時線段OC上另一個點Q從C點出發(fā)向O點做勻速運動,速度為每秒2個單位長度(當Q點到達O點時停止運動,P點也同時停止運動).過Q點作x軸的垂線,與直線AC交于G點,以QG為邊在QG的左側(cè)作正方形QGMN(當Q點運動時,點G、點M、點N也隨之運動),若P點運動t秒時,兩個正方形分別有一條邊恰好落在同一條直線上(正方形在x軸上的邊除外),求此刻t的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在平面直角坐標系中,如果將拋物線先向左平移1個單位,再向上平移2個單位,那么所得的新拋物線的解析式是(     )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù),則下列說法正確的是(    )
A.y有最小值0,有最大值-3
B.y有最小值-3,無最大值
C.y有最小值-1,有最大值-3
D.y有最小值-3,有最大值0

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,已知拋物線y=ax2+bx(a≠0)經(jīng)過A(3,0)、B(4,4)、D(2, n)三點.

(1)求拋物線的解析式及點D坐標;
(2)點M是拋物線對稱軸上一動點,求使BM-AM的值最大時的點M的坐標;
(3)如圖2,將射線BA沿BO翻折,交y軸于點C,交拋物線于點N,求點N的坐標;
(4)在(3)的條件下,連結(jié)ON,OD,如圖2,請求出所有滿足△POD∽△NOB的點P坐標(點P、O、D分別與點N、O、B對應).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某公司投資新建了一商場,共有商鋪30間.據(jù)預測,當每間的年租金定為10萬元時,可全部租出.每間的年租金每增加5000元,少租出商鋪1間.(假設(shè)年租金的增加額均為5000元的整數(shù)倍)該公司要為租出的商鋪每間每年交各種費用2萬元,未租出的商鋪每間每年交各種費用1萬元.
(1)當每間商鋪的年租金定為12萬元時,能租出多少間?年收益多少萬元?
(2)當每間商鋪的年租金定為多少萬元時,該公司的年收益最大,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如果將拋物線向左平移2個單位,那么所得拋物線的表達式為
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知二次函數(shù),當時,自變量的取值范圍是        ;

查看答案和解析>>

同步練習冊答案