【題目】如圖,在正方形中,,分別為的中點,連接,交點為. 若正方形的邊長為.

1)求證:

2)將沿對折,得到(如圖),延長的延長線于點,求的長;

3)將繞點逆時針方向旋轉(zhuǎn),使邊正好落在上,得到(如圖),若相交于點,求四邊形面積.

【答案】(1)詳見解析;(2)1;(3)四邊形的面積是

【解析】

1)運用RtABERtBCF,再利用角的關(guān)系求得∠BGE=90°求證;
2BCF沿BF對折,得到BPF,利用角的關(guān)系證明QF=QB,在RtQPB中,利用勾股定理即可解決問題.
3)先求出正方形的邊長,再根據(jù)面積比等于相似邊長比的平方,求得SAGN=,再利用S四邊形GHMN=SAHM-SAGN求解.

解:(1)證明:如圖,

分別是正方形的中點,

,

中,

,

,

又∵,

,

.

2)解:如圖,根據(jù)題意得,

,

,

,

中,設(shè),

,

,

3)解:∵正方形邊長為,

,

,

,

,

,

∴四邊形的面積是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校教師開展了練一手好字的活動,校委會對部分教師練習(xí)字帖的情況進行了問卷調(diào)查,問卷設(shè)置了柳體”、“顏體”、”歐體其他類型,每位教師僅能選一項,根據(jù)調(diào)查的結(jié)果繪制了如下統(tǒng)計表:

類別

柳體

顏體

歐體

其他

合計

人數(shù)

4

10

6

占的百分比

0.5

0.25

1

根據(jù)圖表提供的信息解答下列問題:

(1)這次問卷調(diào)查了多少名教師?

(2)請你補全表格.

(3)在調(diào)查問卷中,甲、乙、丙、丁四位教師選擇了柳體,現(xiàn)從以上四位教師中任意選出2名教師參加學(xué)校的柳體興趣小組,請你用畫樹狀圖或列表的方法,求選出的2人恰好是乙和丙兩位教師的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,點的坐標為,點軸正半軸上一點,以為邊作等腰直角三角形,使,點在第一象限。若點在函數(shù)的圖象上,則的面積為(

A. .B. .C. .D. .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,GCD邊中點,連接AG并延長,分別交對角線BD于點F,交BC邊延長線于點E.若FG2,則AE的長度為( )

A. 6B. 8

C. 10D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2(m1)x(m21)0

(1)若該方程有實數(shù)根,求m的值.

(2)對于函數(shù)y1x2(m1)x(m21),當(dāng)x1時,y1隨著x的增大而增大.

①求m的范圍.

②若函數(shù)y22xn與函數(shù)交于y軸上同一點,求n的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點A在點(2 ,0)(3 0)之間,對稱軸是x=1.對于下列結(jié)論:① ab0;② 2a+b=0;③ 3a+c0;④a+b≥m(am+b)(m為實數(shù));⑤ 當(dāng)-1x3時,y0. 其中正確結(jié)論的個數(shù)為( )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】才飲長沙水,又食武昌魚”.因一代偉人毛澤東的佳句,鄂州武昌魚名揚天下.某網(wǎng)店專門銷售某種品牌真空包裝的武昌魚熟食產(chǎn)品,成本為30/盒,每天銷售y()與銷售單價x()之間存在一次函數(shù)關(guān)系,如圖所示.

(1)yx之間的函數(shù)關(guān)系式;

(2)如果規(guī)定每天這種武昌魚熟食產(chǎn)品的銷售量不低于240盒,當(dāng)銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?

(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3 600元,試確定這種武昌魚熟食產(chǎn)品銷售單價的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,ACBC4,P是△ABC的高CD上一個動點,以B點為旋轉(zhuǎn)中心把線段BP逆時針旋轉(zhuǎn)45°得到BP′,連接DP′,則DP′的最小值是( 。

A.2-2B.42C.2D.-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:求1+2+22+23+24+…+22017

首先設(shè)S=1+2+22+23+24+…+22017 2S=2+22+23+24+25+…+22018

②﹣①得S=220181 1+2+22+23+24+…+22017=220181

以上解法,在數(shù)列求和中,我們稱之為:錯位相減法

請你根據(jù)上面的材料,解決下列問題

1)求1+3+32+33+34+…+32019的值

2)若a為正整數(shù)且,求

查看答案和解析>>

同步練習(xí)冊答案