(2010•長(zhǎng)沙)在正方形ABCD中,AC為對(duì)角線,E為AC上一點(diǎn),連接EB、ED.
(1)求證:△BEC≌△DEC;
(2)延長(zhǎng)BE交AD于F,當(dāng)∠BED=120°時(shí),求∠EFD的度數(shù).

【答案】分析:(1)在證明△BEC≌△DEC時(shí),根據(jù)題意知,運(yùn)用SAS公理就行;
(2)根據(jù)全等三角形的性質(zhì)知對(duì)應(yīng)角相等,即∠BEC=∠DEC=∠BED,又由對(duì)頂角相等、三角形的一個(gè)內(nèi)角的補(bǔ)角是另外兩個(gè)內(nèi)角的和求得∠EFD=∠BEC+∠CAD.
解答:(1)證明:∵四邊形ABCD是正方形,
∴BC=CD,∠ECB=∠ECD=45°.
∴在△BEC與△DEC中,

∴△BEC≌△DEC(SAS).(3分)

(2)解:∵△BEC≌△DEC,
∴∠BEC=∠DEC=∠BED.(4分)
∵∠BED=120°,∴∠BEC=60°=∠AEF.(5分)
∴∠EFD=60°+45°=105°.(6分)
點(diǎn)評(píng):解答本題要充分利用正方形的特殊性質(zhì)、全等三角形的判定與性質(zhì)、以及對(duì)頂角相等等知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2010•長(zhǎng)沙)如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊分別在x軸和y軸上,OA=cm,OC=8cm,現(xiàn)有兩動(dòng)點(diǎn)P、Q分別從O、C同時(shí)出發(fā),P在線段OA上沿OA方向以每秒cm的速度勻速運(yùn)動(dòng),Q在線段CO上沿CO方向以每秒1cm的速度勻速運(yùn)動(dòng)、設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)用t的式子表示△OPQ的面積S;
(2)求證:四邊形OPBQ的面積是一個(gè)定值,并求出這個(gè)定值;
(3)當(dāng)△OPQ與△PAB和△QPB相似時(shí),拋物線y=x2+bx+c經(jīng)過B、P兩點(diǎn),過線段BP上一動(dòng)點(diǎn)M作y軸的平行線交拋物線于N,當(dāng)線段MN的長(zhǎng)取最大值時(shí),求直線MN把四邊形OPBQ分成兩部分的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖南省長(zhǎng)沙市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•長(zhǎng)沙)如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊分別在x軸和y軸上,OA=cm,OC=8cm,現(xiàn)有兩動(dòng)點(diǎn)P、Q分別從O、C同時(shí)出發(fā),P在線段OA上沿OA方向以每秒cm的速度勻速運(yùn)動(dòng),Q在線段CO上沿CO方向以每秒1cm的速度勻速運(yùn)動(dòng)、設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)用t的式子表示△OPQ的面積S;
(2)求證:四邊形OPBQ的面積是一個(gè)定值,并求出這個(gè)定值;
(3)當(dāng)△OPQ與△PAB和△QPB相似時(shí),拋物線y=x2+bx+c經(jīng)過B、P兩點(diǎn),過線段BP上一動(dòng)點(diǎn)M作y軸的平行線交拋物線于N,當(dāng)線段MN的長(zhǎng)取最大值時(shí),求直線MN把四邊形OPBQ分成兩部分的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(11)(解析版) 題型:解答題

(2010•長(zhǎng)沙)在正方形ABCD中,AC為對(duì)角線,E為AC上一點(diǎn),連接EB、ED.
(1)求證:△BEC≌△DEC;
(2)延長(zhǎng)BE交AD于F,當(dāng)∠BED=120°時(shí),求∠EFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(15)(解析版) 題型:解答題

(2010•長(zhǎng)沙)在正方形ABCD中,AC為對(duì)角線,E為AC上一點(diǎn),連接EB、ED.
(1)求證:△BEC≌△DEC;
(2)延長(zhǎng)BE交AD于F,當(dāng)∠BED=120°時(shí),求∠EFD的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案