【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)點M是弧AB的中點,CM交AB于點N,若AB=4,求MN·MC的值.
【答案】(1)證明見解析;(2)8.
【解析】試題分析:(1)已知C在圓上,故只需證明OC與PC垂直即可;根據(jù)圓周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是 O的切線;(2)連接MA,MB,由圓周角定理可得∠ACM=∠BCM,進而可得△MBN∽△MCB,故BM2=MNMC;代入數(shù)據(jù)可得MNMC=BM2=8.
試題解析:(1)證明:∵OA=OC,
∴∠A=∠ACO.
又∵∠COB=2∠A,∠COB=2∠PCB,
∴∠A=∠ACO=∠PCB.
又∵AB是O的直徑,
∴∠ACO+∠OCB=90°.
∴∠PCB+∠OCB=90°,OC⊥CP.
∵OC是O的半徑,
∴PC是O的切線。
(2)連接MA,MB,
∵點M是的中點,
∴ =.
∴∠ACM=∠BCM.
∵∠ACM=∠ABM,
∴∠BCM=∠ABM.
∵∠BMN=∠BMC,
∴△MBN∽△MCB.
∴.
∴BM2=MNMC.
又∵AB是O的直徑,AM=BM,
∴∠AMB=90°,AM=BM.
∵AB=4,
∴BM=.
∴MNMC=BM2=8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一張長方形紙片ABCD按圖中的方式折疊,使點A與點E重合,點C與點F重合(E,F兩點均在BD上),折痕分別為BH,DG.試說明:△BHE≌△DGF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,一元二次方程x2﹣8x+15=0的兩根分別是⊙O1和⊙O2的半徑,當(dāng)⊙O1和⊙O2相切時,O1O2的長度是( )
A.2
B.8
C.2或8
D.2<O1O2<8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△POQ中,OP=OQ=4,M是PQ中點,∠P=∠Q=45°,將一三角尺的直角頂點放在點M處,以M為旋轉(zhuǎn)中心旋轉(zhuǎn)三角尺,三角尺的兩直角邊與△POQ的兩直角邊分別交于點A、B.試說明:MA=MB.
+
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司的電話號碼是八位數(shù),這個號碼的前四位數(shù)字相同,后五位數(shù)字是連續(xù)減少1的自然數(shù),全部數(shù)字之和恰好等于號碼的最后兩位數(shù),那么,該公司的電話號碼是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們給出如下定義:若一個四邊形的兩條對角線相等,則稱這個四邊形為等對角線四邊形.請解答下列問題:
(1)寫出你所學(xué)過的特殊四邊形中是等對角線四邊形的兩種圖形的名稱;
(2)探究:當(dāng)?shù)葘蔷四邊形中兩條對角線所夾銳角為60°時,這對60°角所對的兩邊之和與其中一條對角線的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com