【題目】如圖,已知直線與x軸、y軸相交于P、Q兩點(diǎn),與的圖象相交于兩點(diǎn),連接OA,OB,給出下列結(jié)論:①;②;③;④不等式的解集是或,其中正確的是( )
A.②③B.③④C.①②③④D.②③④
【答案】A
【解析】
根據(jù)一次函數(shù)和反比例函數(shù)的性質(zhì)得到,故①錯誤;
把A(-2,m)、B(1,n)代入中得到-2m=n,故②正確;
把A(-2,m)、B(1,n)代入y=k1x+b得到y=-mx-m,求得P(-1,0),Q(0,-m),根據(jù)三角形的面積公式即可得到S△AOP=S△BOQ,故③正確;
根據(jù)圖象得到不等式的解集是x<-2或0<x<1,故④錯誤.
由題中圖象知: ,
,故①錯誤;
∵點(diǎn)在反比例函數(shù)的圖象上,
,
,故②正確;
把代入,
得,
解得,
,
解得:,,
∵已知直線y=k1x+b與x軸、y軸相交于P、Q兩點(diǎn),
令,得,令,得.
,
,
,
,故③正確;
由題中圖象知,當(dāng)或時(shí)直線在反比例函數(shù)圖象的上方,
∴不等式的解集是或,故④錯誤,
綜上,正確的結(jié)論是②③.
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,∠B=60°,AB=3cm,過點(diǎn)A作∠EAF=60°,分別交DC,BC的延長線于點(diǎn)E,F,連接EF.
(1)如圖1,當(dāng)CE=CF時(shí),判斷△AEF的形狀,并說明理由;
(2)若△AEF是直角三角形,求CE,CF的長度;
(3)當(dāng)CE,CF的長度發(fā)生變化時(shí),△CEF的面積是否會發(fā)生變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)A是x軸上的一個動點(diǎn),過點(diǎn)A作x軸的垂線PA交雙曲線于點(diǎn)P,連接OP.
(1)當(dāng)點(diǎn)A在x軸上的正方向上運(yùn)動時(shí),的面積是否發(fā)生變化?若不變,請求出的面積;若變化,請說明理由.
(2)如圖2,在x軸上點(diǎn)A的右側(cè)有一點(diǎn)D,過點(diǎn)D作x軸的垂線DB交雙曲線于點(diǎn)B,連接BO交AP于點(diǎn)C,設(shè)的面積為,梯形BCAD的面積為,則與的大小關(guān)系是________(選填“>”“=”或“<”)
(3)如圖3,PO的延長線與雙曲線的另一個交點(diǎn)是F,作FH垂直于x軸,垂足為H,連接AF,PH,試說明四邊形APHF的面積為常數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=mx+n(m≠0)的圖象與反比例函數(shù)y=(k≠0)的圖象交于第一、三象限內(nèi)的A、B兩點(diǎn),與y軸交于點(diǎn)C,過點(diǎn)B作BM⊥x軸,垂足為M,BM=OM,OB=2,點(diǎn)A的縱坐標(biāo)為4.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)連接MC,求四邊形MBOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某批發(fā)商以每件50元的價(jià)格購500件恤,若以單價(jià)70元銷售,預(yù)計(jì)可售出200件,批發(fā)商的銷售策略是:第一個月為了增加銷售,在單價(jià)70元的基礎(chǔ)上降價(jià)銷售,經(jīng)過市場調(diào)查,單價(jià)每降低1元,可多售出10件,但最低單價(jià)高于購進(jìn)的價(jià)格,每一個月結(jié)束后,將剩余的恤一次性虧本清倉銷售,清倉時(shí)單價(jià)為40元.
(1)若設(shè)第一個月單價(jià)降低元,當(dāng)月出售恤獲得的利潤為元,清倉剩下恤虧本元,請分別求出、與的函數(shù)關(guān)系式;
(2)從增加銷售量的角度看,第一個月批發(fā)商降價(jià)多少元時(shí),銷售完這批恤獲得的利潤為1000元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在矩形ABCD中,AB=1.BC=,P為邊AD上任意一點(diǎn),連接PB,則PB+PD的最小值為( )
A.B.2C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,對角線AC、BD交于點(diǎn)O,點(diǎn)E在AB上,點(diǎn)F在BC的延長線上,且AE=CF,連接EF交AC于點(diǎn)P,分別連接DE,DF,DP
(1)求證:△ADE≌△CDF;
(2)求證:△ADP∽△BDF;
(3)如圖2,若PE=BE,PC=,求CF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一輪船以30km/h的速度由西向東航行,在途中接到臺風(fēng)警報(bào),臺風(fēng)中心正以20km/h的速度由南向北移動.已知距臺風(fēng)中心200km的區(qū)域(包括邊界)都屬于受臺風(fēng)影響區(qū).當(dāng)輪船接到臺風(fēng)警報(bào)時(shí),測得BC=500km,BA=300km.
問:(1)如果輪船不改變航向,輪船會不會進(jìn)入臺風(fēng)影響區(qū)?
(2)若輪船進(jìn)入臺風(fēng)影響區(qū),那么從接到警報(bào)開始,經(jīng)多少時(shí)間就進(jìn)入臺風(fēng)影響區(qū)?(結(jié)果精確到0.01h)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=6,E是BC邊的中點(diǎn),點(diǎn)P在線段AD上,過P作PF⊥AE于F,設(shè)PA=x.
(1)求證:△PFA∽△ABE;
(2)當(dāng)點(diǎn)P在線段AD上運(yùn)動時(shí),設(shè)PA=x,是否存在實(shí)數(shù)x,使得以點(diǎn)P,F,E為頂點(diǎn)的三角形也與△ABE相似?若存在,請求出x的值;若不存在,請說明理由;
(3)探究:當(dāng)以D為圓心,DP為半徑的⊙D與線段AE只有一個公共點(diǎn)時(shí),請直接寫出x滿足的條件: .
備用圖
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com