【題目】如圖,在△ABC中,AB=AC=14,DE是線段AB的垂直平分線.
(1)若△EBC的周長是24,求BC的長;
(2)若∠A=x°,求∠EBC的度數(shù)(用含x的代數(shù)式表示).
【答案】(1)10;(2)∠EBC=90°﹣x°.
【解析】
(1)首先根據(jù)線段垂直平分線的性質得出EA=EB,再由△EBC的周長,即可得出BC;
(2)首先由AB=AC,∠A=x°,得出∠ABC=∠C=(180°﹣∠A)=(180°﹣x°),再由EA=EB,得出∠EBA=∠A=x°,進而得出∠EBC.
(1)∵DE是線段AB的垂直平分線,
∴EA=EB.
∵△EBC的周長是24,
∴BC+EB+EC=24,
∴BC+EA+EC=24,即BC+AC=24.
∴BC=24﹣AC=24﹣14=10.
(2)∵AB=AC,∠A=x°,
∴∠ABC=∠C=(180°﹣∠A)=(180°﹣x°).
∵EA=EB,
∴∠EBA=∠A=x°,
∴∠EBC=∠ABC﹣∠EBA
=(180°﹣x°)﹣x°=90°﹣x°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在以點O為原點的直角坐標系中,一次函數(shù)y=-x+1的圖象與x軸交于A,與y軸交于點B,點C在第二象限內且為直線AB上一點,OC=AB,反比例函數(shù)y=的圖象經過點C,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在長度為1個單位的小正方形組成的網(wǎng)格中,點A、B、C在小正方形的頂點上.
(1)在圖中畫出與△ABC關于直線l成軸對稱的△AB′C′;
(2)△ABC的面積為________;
(3)在直線l上找一點P,使PB+PC的長最短,則這個最短長度為________個單位長度.(在圖形中標出點P)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,對任意一個正整數(shù)n都可以進行這樣的分解:n=pq(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱pq是n的最佳分解,并規(guī)定:F(n)=,例如12可以分解為112,26或34,因為12-1>6-2>4-3,所以34是最佳分解,所以F(n)=。
(1)如果一個正整數(shù)是另外一個正整數(shù)b的平方,我們稱正整數(shù)a是完全平方數(shù),求證:對任意一個完全平方數(shù)m,總有F(m)=1
(2)如果一個兩位正整數(shù)t,t=10x+y。1≤x≤y≤9,x,y為自然數(shù)),交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為18,那么我們就稱這個數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”中F(t)的最大值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用配方法解下列方程時,配方正確的是( )
A. 方程x2-6x-5=0,可化為(x-3)2=4
B. 方程y2-2y-2 015=0,可化為(y-1)2=2 015
C. 方程a2+8a+9=0,可化為(a+4)2=25
D. 方程2x2-6x-7=0,可化為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠BAD=100°,∠B=∠D=90°,在BC、CD上分別找一個點M、N,使△AMN的周長最小,則∠AMN+∠ANM的度數(shù)為( )
A.130°B.120°C.160°D.100°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=12cm,∠B=∠C,BC=8cm,點D為AB的中點.
(1)如果點P在線段BC上以2cm/s的速度由點B向點C運動,同時,點Q在線段CA上由點C向點A運動.
①若點Q的運動速度與點P的運動速度相等,經過1秒后,△BPD與△CQP是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,則經過 后,點P與點Q第一次在△ABC的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延長線于點E,CE=1,延長CE、BA交于點F.
(1)求證:△ADB≌△AFC;
(2)求BD的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小王于上午8時從甲地出發(fā)去相距50千米的乙地. 右圖中,折線是表示小王離開甲地的時間(時)與路程(千米)之間的函數(shù)關系的圖像.根據(jù)圖像給出的信息,下列判斷中,錯誤的是( )
A.小王11時到達乙地
B.小王在途中停了半小時
C.與8:009:30相比,小王在10:0011:00前進的速度較慢
D.出發(fā)后1小時,小王走的路程少于25千米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com