已知:如圖,是上一點(diǎn),∥,,分別交于點(diǎn),∠1=∠2,探索線段之間的關(guān)系,并說明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平行四邊形ABCD中,過點(diǎn)A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點(diǎn),且∠AFE=∠B.
(1)求證:△ADF∽△DEC
(2)若AB=4,AD=3,AE=3,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,△ABC是一張銳角三角形的硬紙片,AD是邊BC上的高,BC=40 cm,AD=30 cm,從這張硬紙片上剪下一個(gè)長(zhǎng)HG是寬HE的2倍的矩形EFGH,使它的一邊EF在BC上,頂點(diǎn)G、H分別在AC、AB上,AD與HG的交點(diǎn)為M. 求矩形的長(zhǎng)與寬.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖1,在Rt△ABC中,∠C=90º,AC=4cm,BC=3cm,點(diǎn)P由點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由點(diǎn)A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連結(jié)PQ。若設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<2),解答下列問題:
(1)當(dāng)t為何值時(shí)?PQ//BC?
(2)設(shè)△APQ的面積為y(cm2),求y與t之間的函數(shù)關(guān)系?
(3)是否存在某一時(shí)刻t,使線段PQ恰好把△ABC的周長(zhǎng)和面積同時(shí)平分?若存在求出此時(shí)t的值;若不存在,說明理由。
(4)如圖2,連結(jié)PC,并把△PQC沿AC翻折,得到四邊形PQP'C,那么是否存在某一時(shí)刻t,使四邊形PQP'C為菱形?若存在求出此時(shí)t的值;若不存在,說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在□ABCD中,E是AB的中點(diǎn),ED和AC相交于點(diǎn)F,過點(diǎn)F作FG∥AB,交AD于點(diǎn)G.
(1)求證:AB=3FG;
(2)若AB:AC=:,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖①,正方形ABCD中,點(diǎn)A、B的坐標(biāo)分別為(0,10),(8,4),點(diǎn)C在第一象限.動(dòng)點(diǎn)P在正方形ABCD的邊上,從點(diǎn)A出發(fā)沿A?B?C?D勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q以相同速度在x軸正半軸上運(yùn)動(dòng),當(dāng)P點(diǎn)到達(dá)D點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)當(dāng)P點(diǎn)在邊AB上運(yùn)動(dòng)時(shí),點(diǎn)Q的橫坐標(biāo)x(長(zhǎng)度單位)關(guān)于運(yùn)動(dòng)時(shí)間t(秒)的函數(shù)圖象如圖②所示,請(qǐng)寫出點(diǎn)Q開始運(yùn)動(dòng)時(shí)的坐標(biāo)及點(diǎn)P運(yùn)動(dòng)速度;
(2)求正方形邊長(zhǎng)及頂點(diǎn)C的坐標(biāo);
(3)如果點(diǎn)P、Q保持原速度不變,當(dāng)點(diǎn)P沿A?B?C?D勻速運(yùn)動(dòng)時(shí),OP與PQ能否相等?若能,求出所有符合條件的t的值;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
探究一:如圖1,已知正方形ABCD,E、F分別是BC、AB上的兩點(diǎn),且AE⊥DF.小明經(jīng)探究,發(fā)現(xiàn)AE=DF.請(qǐng)你幫他寫出證明過程.
探究二:如圖2,在矩形ABCD中,AB=3,BC=4,E、G分別在邊BC、AD上,F、H分別在邊AB、CD上,且GE⊥FH.小明發(fā)現(xiàn),GE與FH并不相等,請(qǐng)你幫他求出的值.
探究三:小明思考這樣一個(gè)問題:如圖3,在正方形ABCD中,若E、G分別在邊BC、AD上,F、H分別在邊AB、CD上,且GE=FH,試問:GE⊥FH是否成立?若一定成立,請(qǐng)給予證明;若不一定成立,請(qǐng)畫圖并作出說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,某同學(xué)想測(cè)量旗桿的高度,他在某一時(shí)刻測(cè)得1米長(zhǎng)的竹竿豎直放置時(shí)影長(zhǎng)1.5米,在同一時(shí)刻測(cè)量旗桿的影長(zhǎng)時(shí),因旗桿靠近一樓房,影子不全落在地面上,有一部分落在墻上,他測(cè)得落在地面上的影長(zhǎng)為21米,留在墻上的影高為2米,求旗桿的高度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com