【題目】(定義)連結(jié)三角形一個(gè)頂點(diǎn)及這個(gè)頂點(diǎn)所對(duì)邊上的任意一點(diǎn),若構(gòu)成的線段能將三角形分割成兩個(gè)等腰三角形,則稱這條線段是這個(gè)三角形的完美分割線.
(嘗試)
(1)如圖,在 Rt△ABC 中,∠C=90°,∠A=30°,請(qǐng)用直尺和圓規(guī)畫出△ABC 的完美分割線.
(2)若一個(gè)直角三角形有兩條完美分割線,請(qǐng)求出這個(gè)直角三角形最小內(nèi)角的度數(shù).
(探究)
(3)一個(gè)等腰三角形的腰長(zhǎng)為 8,其中一條完美分割線分得的兩個(gè)三角形中有一個(gè)三角形與原三角形相似,求對(duì)應(yīng)完美分割線的長(zhǎng)度.
【答案】(1)見解析;(2)22.5度;(3)完美分割線的長(zhǎng)度為或
【解析】
(1)作AB邊的垂直平分線交AB于P,連接CP,則線段CP即為△ABC 的完美分割線;
(2)根據(jù)完美分割線的定義可知,直角三角形有兩條完美分割線時(shí),其中一條是斜邊上的中線,另一條會(huì)構(gòu)成等腰直角三角形,據(jù)此求解即可;
(3)分三種情況討論:①當(dāng)原三角形為銳角三角形時(shí),②當(dāng)原三角形為直角三角形時(shí),③當(dāng)原三角形為鈍角三角形時(shí),分別作出圖形,利用相似三角形的性質(zhì)計(jì)算即可.
解:(1)如圖所示,線段CP即為△ABC 的完美分割線;
(2)∵直角三角形有兩條完美分割線,
∴其中一條是斜邊上的中線,另一條會(huì)構(gòu)成等腰直角三角形,
如圖1,∠C=90°,BC=CP,PB=PA,
∴∠CBP=∠CPB=45°,
∴∠A=∠PBA=22.5°,
∴∠ABC=90°-22.5°=67.5°,
如圖2,P為AB中點(diǎn),則PB=PC=PA,
即CP也是△ABC的完美分割線,
故這個(gè)直角三角形最小內(nèi)角的度數(shù)為22.5°;
(3)①當(dāng)原三角形為銳角三角形時(shí),如圖所示,BP為完美分割線,
設(shè)BP=x,
∵AB=AC=8,△ABC∽△BCP,
∴,即,
解得:或(舍去),
即完美分割線BP的長(zhǎng)度為;
②當(dāng)原三角形為直角三角形時(shí),由題意可知該三角形為等腰直角三角形,如圖所示,BP為完美分割線,
∵AB=BC=8,
∴AC=,
∴BP=,
即完美分割線BP的長(zhǎng)度為;
③當(dāng)原三角形為鈍角三角形時(shí),如圖所示,BP為完美分割線,
設(shè)BP=x,
∵BA=BC=8,△BPC∽△CBA,
∴,即,
得:或(舍去),
即完美分割線BP的長(zhǎng)度為;
綜上:對(duì)應(yīng)完美分割線的長(zhǎng)度為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A(a,1),B(b,3)都在雙曲線y=﹣上,點(diǎn)P,Q分別是x軸,y軸上的動(dòng)點(diǎn),則四邊形ABPQ周長(zhǎng)的最小值為( 。
A.4B.6C.2+2D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AD=2,AB=3,過點(diǎn)A,C作相距為2的平行線段AE,CF,分別交CD,AB于點(diǎn)E,F(xiàn),則DE的長(zhǎng)是( 。
A. B. C. 1 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,AB=AC,點(diǎn) M 在 BA 的延長(zhǎng)線上,點(diǎn) N 在 BC 的延長(zhǎng)線上,過點(diǎn) C 作CD∥AB 交∠CAM 的平分線于點(diǎn) D.
(1)如圖 1,求證:四邊形 ABCD 是平行四邊形;
(2)如圖 2,當(dāng)∠ABC=60°時(shí),連接 BD,過點(diǎn) D 作 DE⊥BD,交 BN 于點(diǎn) E,在不添加任何輔助線的情況下,請(qǐng)直接寫出圖 2 中四個(gè)三角形(不包含△CDE),使寫出的每個(gè)三角形的面積與△CDE 的面積相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(2,4),B(﹣4,n)兩點(diǎn).
(1)分別求出一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)過點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C,連接AC,求△ACB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有紅、黃兩個(gè)布袋,紅布袋中有兩個(gè)完全相同的小球,分別標(biāo)有數(shù)字2和4.黃布袋中有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字﹣2,﹣4和﹣6.小賢先從紅布袋中隨機(jī)取出一個(gè)小球,記錄其標(biāo)有的數(shù)字為x,再從黃布袋中隨機(jī)取出一個(gè)小球,記錄其標(biāo)有的數(shù)字為y,這樣就確定點(diǎn)M的一個(gè)坐標(biāo)為(x.y)
(1)用列表或畫樹狀圖的方法寫出點(diǎn)M的所有可能坐標(biāo);
(2)求點(diǎn)M落在雙曲線y=上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)L1:y=mx2+2mx﹣3m+1(m≥1)和二次函數(shù)L2:y=﹣m(x﹣3)2+4m﹣1(m≥1)圖象的頂點(diǎn)分別為M,N,與x軸分別相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊)和C、D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左邊).
(1)函數(shù)y=mx2+2mx﹣3m+1(m≥1)的頂點(diǎn)坐標(biāo)為______;當(dāng)二次函數(shù)L1,L2的y值同時(shí)隨著x的增大而增大時(shí),則x的取值范圍是______;
(2)當(dāng)AD=MN時(shí),判斷四邊形AMDN的形狀(直接寫出,不必證明);
(3)拋物線L1,L2均會(huì)分別經(jīng)過某些定點(diǎn),
①求所有定點(diǎn)的坐標(biāo);
②若拋物線L1位置固定不變,通過左右平移拋物線L2的位置使這些定點(diǎn)組成的圖形為菱形,則拋物線L2應(yīng)平移的距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個(gè)問題:探究函數(shù)的圖象與性質(zhì).小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小東的探究過程,請(qǐng)補(bǔ)充完整:
(1)函數(shù)的自變量x的取值范圍是 ;
(2)下表是x與y的幾組對(duì)應(yīng)值.
... | 1 | 2 | 3 | ... | ||||||||
... | m | ... |
求m的值;
(3)如圖,在平面直角坐標(biāo)系中,已描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(4)進(jìn)一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點(diǎn)的坐標(biāo)是(1,).結(jié)合函數(shù)的圖象,寫出該函數(shù)的其它性質(zhì)(寫兩條即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,⊙C的半徑為r(r>1),P是圓內(nèi)與圓心C不重合的點(diǎn),⊙C的“完美點(diǎn)”的定義如下:若直線CP與⊙C交于點(diǎn)A,B,滿足|PA﹣PB|=2,則稱點(diǎn)P為⊙C的“完美點(diǎn)”,如圖為⊙C及其“完美點(diǎn)”P的示意圖.
(1)當(dāng)⊙O的半徑為2時(shí),
①在點(diǎn)M,N(0,1),T中,⊙O的“完美點(diǎn)”是 ;
②若⊙O的“完美點(diǎn)”P在直線y=x上,求PO的長(zhǎng)及點(diǎn)P的坐標(biāo);
(2)⊙C的圓心在直線y=x+1上,半徑為2,若y軸上存在⊙C的“完美點(diǎn)”,求圓心C的縱坐標(biāo)t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com