【題目】如圖,AB是⊙O的直徑,F是⊙O上一點(diǎn),連接FO、FB.C中點(diǎn),過點(diǎn)CCDAB,垂足為D,CDFB于點(diǎn)E,CGFB,交AB的延長線于點(diǎn)G.

1)求證:CG是⊙O的切線;

2)若BOF=120°,且CE=4,求⊙O的半徑.

【答案】1)見解析;(2)⊙O的半徑為4

【解析】

1)連接OC,利用垂徑定理得到OCBF,根據(jù)CGFB得到∠OCG=90°即可求解;

2)連接BC,由(1)知,∠COB =60°,得到△OBC為等邊三角形.,由CDOB得到∠OCD=30°,求出EM=CE=2,利用勾股定理求出CM=,再根據(jù)等腰三角形三線合一OM=CM=,故OC=4,即為半徑長.

1)證明:連接OC.

∵點(diǎn)C的中點(diǎn),

,

所以∠COB=∠COF,

因?yàn)?/span>OB=OF,

所以OC⊥BF,

設(shè)垂足為M,則∠OMB=90°.

因?yàn)?/span>CGFB,

所以∠OCG=∠OMB=90°,

所以CGO的切線.

2)解:連接BC.

由(1)知,∠COB=∠COF=∠BOF=60°,

因?yàn)?/span>OB=OC,

所以△OBC為等邊三角形,∠OCB=60°,

CDOB,

CD平分∠OCB,

∠OCD=30°

EM=CE=2,

OC⊥BF,

所以CM=.

OM=CM=,

所以OC=4,即O的半徑為4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,AC=8m,BC=6m,點(diǎn)PC點(diǎn)出發(fā)以2m/s的速度向終點(diǎn)A勻速移動(dòng),同時(shí)點(diǎn)Q由點(diǎn)B出發(fā)以1m/s的速度向終點(diǎn)C勻速移動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)點(diǎn)也隨之停止移動(dòng).

1)經(jīng)過幾秒PCQ的面積為ACB的面積的?

2)經(jīng)過幾秒,PCQACB相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年女排世界杯中,中國女排以11站全勝且只丟3局的成績成功衛(wèi)冕本屆世界杯冠軍.某校七年級為了弘揚(yáng)女排精神,組建了排球社團(tuán),通過測量同學(xué)們的身高(單位:cm),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中提供的信息,解答下列問題.

(1)填空:樣本容量為___a=___;

(2)把頻數(shù)分布直方圖補(bǔ)充完整;

(3)若從該組隨機(jī)抽取1名學(xué)生,估計(jì)這名學(xué)生身高低于165cm的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=a,AD=b,點(diǎn)P是對角線BD上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與BD重合),連接AP并延長交射線BC于點(diǎn)Q

1)當(dāng)APBD時(shí),求ABQ的面積(用含ab的代數(shù)式表示).

2)若點(diǎn)MAD邊的中點(diǎn),連接MPBC于點(diǎn)N,證明:點(diǎn)N也為線段BQ的中點(diǎn).

3)如圖,當(dāng)為何值時(shí),ADPBPQ的面積之和最小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綠水青山,就是金山銀山,為了改善生態(tài)環(huán)境,某縣政府準(zhǔn)備對境內(nèi)河流進(jìn)行清淤、疏通河道,同時(shí)在人群密集區(qū)沿河流修建濱河步道,打造生態(tài)濕地公園.

1201811月至12月,一期工程原計(jì)劃疏通河道和修建濱河步道里程數(shù)共計(jì)20千米,其中修建濱河步道里程數(shù)是疏通河道里程數(shù)的倍,那么,原計(jì)劃修建濱河步道多少千米?

2)至201812月底,一期工程順利按原計(jì)劃完成總共耗資840萬元,其中疏通河道工程共耗資600萬元;2019年二期工程開工后,疏通河道每千米工程費(fèi)用較一期降低2.5a%,里程數(shù)較一期增加3a%;修建濱河步道每千米工程費(fèi)用較一期上漲2.5a%,里程數(shù)較一期增加5a%,經(jīng)測算,二期工程總費(fèi)用將比一期增加2a%,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為圓心,2為半徑畫,P上一動(dòng)點(diǎn),且P在第一象限內(nèi),過點(diǎn)P的切線與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B.在上存在點(diǎn)Q,使得以QO、AP為頂點(diǎn)的四邊形是平行四邊形,請寫出Q點(diǎn)的坐標(biāo)_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝超市購進(jìn)單價(jià)為30元的童裝若干件,物價(jià)部門規(guī)定其銷售單價(jià)不低于每件30元,不高于每件60元.銷售一段時(shí)間后發(fā)現(xiàn):當(dāng)銷售單價(jià)為60元時(shí),平均每月銷售量為80件,而當(dāng)銷售單價(jià)每降低10元時(shí),平均每月能多售出20件.同時(shí),在銷售過程中,每月還要支付其他費(fèi)用450元.設(shè)銷售單價(jià)為x元,平均月銷售量為y件.

1)求出yx的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

2)當(dāng)銷售單價(jià)為多少元時(shí),銷售這種童裝每月可獲利1800元?

3)當(dāng)銷售單價(jià)為多少元時(shí),銷售這種童裝每月獲得利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0對稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:①abc<0;②4ac<b2;③方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3;④3a+c>0;⑤當(dāng)y≥0時(shí),x的取值范圍是﹣1≤x≤3.其中結(jié)論正確的個(gè)數(shù)是( 。

A. 1個(gè)B. 2個(gè)C. 3D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在同一平面內(nèi),將兩個(gè)全等的等腰直角三角形ABCAFG擺放在一起,A為公共頂點(diǎn),∠BAC=AGF=90°,AB=4.ABC固定不動(dòng),AFG繞點(diǎn)A旋轉(zhuǎn),AF、AG與邊BC的交點(diǎn)分別為D、E(點(diǎn)D不與點(diǎn)B重合,點(diǎn)E不與點(diǎn)C重合).

(1)求證:ABEDCA

(2)BE·CD=kk為常數(shù)),求k的值;

(3)在旋轉(zhuǎn)過程中,當(dāng)AFG旋轉(zhuǎn)到如圖2的位置時(shí),AGBC交于點(diǎn)EAF的延長線與CB的延長線交于點(diǎn)D,那么(2)中k的值是否發(fā)生了變化?為什么?

查看答案和解析>>

同步練習(xí)冊答案