【題目】如圖1,已知拋物線y=﹣ x2﹣ x+c與x軸相交于A、B兩點(diǎn)(B點(diǎn)在A點(diǎn)的左側(cè)),與y軸相交于C點(diǎn),且AB=10.
(1)求這條拋物線的解析式;
(2)如圖2,D點(diǎn)在x軸上,且在A點(diǎn)的右側(cè),E點(diǎn)為拋物線上第二象限內(nèi)的點(diǎn),連接ED交拋物線于第二象限內(nèi)的另外一點(diǎn)F,點(diǎn)E到y(tǒng)軸的距離與點(diǎn)F到y(tǒng)軸的距離之比為3:1,已知tan∠BDE= ,求點(diǎn)E的坐標(biāo);
(3)如圖3,在(2)的條件下,點(diǎn)G由B出發(fā),沿x軸負(fù)方向運(yùn)動(dòng),連接EG,點(diǎn)H在線段EG上,連接DH,∠EDH=∠EGB,過點(diǎn)E作EK⊥DH,與拋物線相應(yīng)點(diǎn)E,若EK=EG,求點(diǎn)K的坐標(biāo).
【答案】
(1)解:由y=﹣ x2﹣ x+c,
可得對(duì)稱軸為x=﹣4
∵AB=10,
∴點(diǎn)A的坐標(biāo)為(1,0),
∴ ,
∴c=3
∴拋物線的解析式為y=﹣ +3.
(2)解:如圖2,作EM⊥x軸,垂足為點(diǎn)M,F(xiàn)N⊥x軸,垂足為點(diǎn)N,F(xiàn)T⊥EM,垂足為點(diǎn)T.
∴∠TMN=∠FNM=∠MTF=90°,
∴四邊形FTMN為矩形,
∴EM∥FN,F(xiàn)T∥BD.
∴∠BDE=∠EFT,
∵tan∠BDE= ,
∴tan∠EFT= ,
設(shè)E(﹣3m,yE),F(xiàn)(﹣m,yF)
∴
∵y=﹣ +3過點(diǎn)E、F,
則yE﹣yF= =(﹣3m2+8m+3)﹣(﹣ +3),
解得m=0(舍去)或m=1,
當(dāng)m=1時(shí),﹣3m=﹣3,
∴ =8.
∴E(﹣3,8)
(3)解:如圖3,作EM⊥x軸,垂足為點(diǎn)M,過點(diǎn)K作KR⊥ED,與ED相交于點(diǎn)R,與x軸相交于點(diǎn)Q.
∵∠KER+∠EDH=90°,∠EGM+∠GEM=90°,∠EDH=∠EGM,
∴∠KER=∠GEM,
在△EGM和△EKR中,
∴△EGM≌△EKR,
∴EM=ER=8,
∵tan∠BDE= .
∴ED=10,
∴DR=2,
∴DQ=
∴Q(﹣ ,0),
可求R( , )
∴直線RQ的解析式為:y= .
設(shè)點(diǎn)K的坐標(biāo)為(x, )代入拋物線解析式可得x=﹣11
∴K(﹣11,﹣8).
【解析】(1)利用拋物線的軸對(duì)稱性,求出對(duì)稱軸,結(jié)合AB=10,求出A點(diǎn)坐標(biāo)代入即可;(2)設(shè)出E的橫坐標(biāo),表示 出E、F的縱坐標(biāo),利用tan∠BDE的定義構(gòu)建關(guān)于m的方程,求出E的坐標(biāo);(3)通過作垂線構(gòu)造出全等三角形,即△EGM≌△EKR,求出直線RQ解析式,解出二者聯(lián)立的方程組, 即可求出其與拋物線交點(diǎn)坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,點(diǎn)E在線段CB的延長(zhǎng)線上,連接DE交AB于點(diǎn)F,∠AED=2∠CED,點(diǎn)G是DF的中點(diǎn),若BE=2,DF=8,則AB的長(zhǎng)為______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)P(1,0).點(diǎn)P第1次向上跳動(dòng)1個(gè)單位至點(diǎn)P1(1,1),緊接著第2次向左跳動(dòng)2個(gè)單位至點(diǎn)P2(-1,1),第3次向上跳動(dòng)1個(gè)單位至點(diǎn)P3,第4次向右跳動(dòng)3個(gè)單位至點(diǎn)P4,第5次又向上跳動(dòng)1個(gè)單位至點(diǎn)P5,第6次向左跳動(dòng)4個(gè)單位至點(diǎn)P6,…….照此規(guī)律,點(diǎn)P第100次跳動(dòng)至點(diǎn)P100的坐標(biāo)是( )
A. (-26,50) B. (-25,50) C. (26,50) D. (25,50)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市為慶祝開業(yè)舉辦大酬賓抽獎(jiǎng)活動(dòng),凡在開業(yè)當(dāng)天進(jìn)店購(gòu)物的顧客,都能獲得一次抽獎(jiǎng)的機(jī)會(huì),抽獎(jiǎng)規(guī)則如下:在一個(gè)不透明的盒子里裝有分別標(biāo)有數(shù)字1、2、3、4的4個(gè)小球,它們的形狀、大小、質(zhì)地完全相同,顧客先從盒子里隨機(jī)取出一個(gè)小球,記下小球上標(biāo)有的數(shù)字,然后把小球放回盒子并攪拌均勻,再?gòu)暮凶又须S機(jī)取出一個(gè)小球,記下小球上標(biāo)有的數(shù)字,并計(jì)算兩次記下的數(shù)字之和,若兩次所得的數(shù)字之和為8,則可獲得50元代金券一張;若所得的數(shù)字之和為6,則可獲得30元代金券一張;若所得的數(shù)字之和為5,則可獲得15元代金券一張;其他情況都不中獎(jiǎng).
(1)請(qǐng)用列表或樹狀圖(樹狀圖也稱樹形圖)的方法(選其中一種即可),把抽獎(jiǎng)一次可能出現(xiàn)的結(jié)果表示出來;
(2)假如你參加了該超市開業(yè)當(dāng)天的一次抽獎(jiǎng)活動(dòng),求能中獎(jiǎng)的概率P.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】試根據(jù)圖中信息,解答下列問題:
(1)購(gòu)買8根跳繩需________元,購(gòu)買14根跳繩需________元;
(2)小紅比小明多買2根,付款時(shí)小紅反而比小明少5元,你認(rèn)為有這種可能嗎?若有,請(qǐng)求小紅購(gòu)買跳繩的根數(shù);若沒有,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A,B在數(shù)軸上的位置如圖所示,其對(duì)應(yīng)的數(shù)分別是a和b,對(duì)于以下結(jié)論:甲:b﹣a<0;乙:a+b>0;丙:|a|<|b|;。篴b>0,其中正確的是( )
A.甲、乙
B.丙、丁
C.甲、丙
D.乙、丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是長(zhǎng)方形,點(diǎn)A、C、D的坐標(biāo)分別為A(9,0)、C(0,4),D(5,0),點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿O→C→B→A運(yùn)動(dòng),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.則當(dāng)t=____秒時(shí),△ODP是腰長(zhǎng)為5的等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,解答下面的問題:
我們知道方程有無數(shù)個(gè)解,但在實(shí)際生活中我們往往只需求出其
正整數(shù)解.
例:由,得:,(x、y為正整數(shù))
∴,則有.又為正整數(shù),則為正整數(shù).由2與3互質(zhì),可知:x為3的倍數(shù),從而x=3,代入∴2x+3y=12的正整數(shù)解為
問題:
(1)請(qǐng)你寫出方程的一組正整數(shù)解: .
(2)若為自然數(shù),則滿足條件的x值為 .
(3)七年級(jí)某班為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的學(xué)生,購(gòu)買了單價(jià)為3元的筆記本與單價(jià)為5元的鋼筆兩種獎(jiǎng)品,共花費(fèi)35元,問有幾種購(gòu)買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若我們規(guī)定三角“”表示為:abc;方框“”表示為:(xm+yn).例如:=1×19×3÷(24+31)=3.請(qǐng)根據(jù)這個(gè)規(guī)定解答下列問題:
(1)計(jì)算:= ______ ;
(2)代數(shù)式為完全平方式,則k= ______ ;
(3)解方程:=6x2+7.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com