如圖,已知:拋物線y=x2+bx-3與x軸相交于A、B兩點,與y軸相交于點C,并且OAOC

(1)求這條拋物線的解析式;

(2)過點CCEx軸,交拋物線于點E,設(shè)拋物線的頂點為點D,試判斷△CDE的形狀,并說明理由;

(3)設(shè)點M在拋物線的對稱軸l上,且△MCD的面積等于△CDE的面積,請寫出點M的坐標(biāo)(無需寫出解題步驟).

答案:
解析:

  解:(1)當(dāng)x=0時,得y=-3.∴C(0,-3)  (1分)

  ∵OAOC,∴OA=3,即得A(-3,0)  (1分)

  由點A在拋物線上,

  得

  解得b=2  (1分)

  ∴所求拋物線的解析式是  (1分)

  (2)由CEx軸,C(0,-3),可設(shè)點E(m,-3).

  由點E在拋物線上,

  得

  解得m1=-2,m2=0.

  ∴E(-2,-3)  (1分)

  又∵,

  ∴頂點D(-1,-4)  (1分)

  ∵,

  ,

  CE=2,

  ∴CDED,且

  ∴△CDE是等腰直角三角形  (3分)

  (3)M1(-1,-2),M2(-1,-6)  (3分,其中只寫出一個得2分)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知一拋物線過坐標(biāo)原點O和點A(1,h)、B(4,0),C為拋物線對稱軸上一點精英家教網(wǎng),且OA⊥AB,∠COB=45°.
(1)求h的值;
(2)求此拋物線的解析式;
(3)若P為線段OB上一個動點(與端點不重合),過點P作PM⊥AB于M,PN⊥OC于N,試求
PM
OA
+
PN
BC
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:拋物線y1=x2-2mx+1,y2=-x2-2mx-1,CE、DF分別是拋物線y1、y2的對稱軸.
(1)請用2種不同的方法,判斷拋物線平行四邊形y1、y2中哪條經(jīng)過點A,哪條經(jīng)過點B?
(2)求證:CE=DF,并求m的取值范圍;
(3)直線l垂直于x軸,與拋物線y1、y2分別交于MN兩點,求線段MN的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知:拋物線y=x2+bx-3與x軸相交于A、B兩點,與y軸相交于點C,并且OA=OC.
(1)求這條拋物線的解析式;
(2)過點C作CE∥x軸,交拋物線于點E,設(shè)拋物線的頂點為點D,試判斷△CDE的形狀,并說明理由;
(3)設(shè)點M在拋物線的對稱軸l上,且△MCD的面積等于△CDE的面積,請寫出點M的坐標(biāo)(無精英家教網(wǎng)需寫出解題步驟).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某拋物線型拱橋的示意圖如圖,已知該拋物線的函數(shù)表達式為y=-
148
x2+12
,為保護該橋的安全,在該拋物線上的點E、F處要安裝兩盞警示燈(點E、F關(guān)于y軸對稱),這兩盞燈的水平距離EF是24米,則警示燈F距水面AB的高度是
 
米.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•利川市一模)如圖,已知:拋物線y=ax2+bx-4(a≠0)與x軸交于A、B兩點,與y軸交于點C,A、B兩點的坐標(biāo)分別為A(-6,0)、B(2,0).
(1)求這條拋物線的函數(shù)表達式;
(2)已知在拋物線的對稱軸上存在一點P,使得PB+PC的值最小,請求出點P的坐標(biāo);
(3)若點D是線段OC上的一個動點(不與點O、點C重合).過點D作DE∥PC交x軸于點E.連接PD、PE.設(shè)CD的長為m,△PDE的面積為S.求S與m之間的函數(shù)關(guān)系式.試說明S是否存在最大值?若存在,請求出最大值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案