若1與1-x的倒數(shù)的差等于1-x的倒數(shù),則x=________.

-1
分析:先由題意列出分式方程:1-,再化為整式方程求解.
解答:由題意列出分式方程:1-,
去分母得:1-x-1=1,
解得x=-1.
經(jīng)檢驗(yàn)是原方程的解.
故本題答案為:x=-1.
點(diǎn)評(píng):(1)解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.
(2)解分式方程一定注意要驗(yàn)根.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若1與1-x的倒數(shù)的差等于1-x的倒數(shù),則x=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省無(wú)錫市惠山北片九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

翻轉(zhuǎn)類的計(jì)算問(wèn)題在全國(guó)各地的中考試卷中出現(xiàn)的頻率很大,因此初三(5)班聰慧的小菲同學(xué)結(jié)合2011年蘇州市數(shù)學(xué)中考卷的倒數(shù)第二題對(duì)這類問(wèn)題進(jìn)行了專門的研究。你能和小菲一起解決下列各問(wèn)題嗎?(以下各問(wèn)只要求寫出必要的計(jì)算過(guò)程和簡(jiǎn)潔的文字說(shuō)明即可。)

1)如圖,小菲同學(xué)把一個(gè)邊長(zhǎng)為1的正三角形紙片(即OAB)放在直線l1上,OA邊與直線l1重合,然后將三角形紙片向右翻轉(zhuǎn)一周回到初始位置,求頂點(diǎn)O所經(jīng)過(guò)的路程;并求頂點(diǎn)O所經(jīng)過(guò)的路線;

2)小菲進(jìn)行類比研究:如圖,她把邊長(zhǎng)為1的正方形紙片OABC放在直線l2上,OA邊與直線l2重合,然后將正方形紙片向右翻轉(zhuǎn)若干次.她提出了如下問(wèn)題:

問(wèn)題:若正方形紙片OABC接上述方法翻轉(zhuǎn)一周回到初始位置,求頂點(diǎn)O經(jīng)過(guò)的路程;

問(wèn)題:正方形紙片OABC按上述方法經(jīng)過(guò)多少次旋轉(zhuǎn),頂點(diǎn)O經(jīng)過(guò)的路程是。

3小菲又進(jìn)行了進(jìn)一步的拓展研究,若把這個(gè)正三角形的一邊OA與這個(gè)正方形的一邊OA重合(如圖3),然后讓這個(gè)正三角形在正方形上翻轉(zhuǎn),直到正三角形第一次回到初始位置(即OAB的相對(duì)位置和初始時(shí)一樣),求頂點(diǎn)O所經(jīng)過(guò)的總路程。

若把邊長(zhǎng)為1的正方形OABC放在邊長(zhǎng)為1的正五邊形OABCD上翻轉(zhuǎn)(如圖),直到正方形第一次回到初始位置,求頂點(diǎn)O所經(jīng)過(guò)的總路程。

4)規(guī)律總結(jié),邊長(zhǎng)相等的兩個(gè)正多邊形,其中一個(gè)在另一個(gè)上翻轉(zhuǎn),當(dāng)翻轉(zhuǎn)后第一次回到初始位置時(shí),該正多邊形翻轉(zhuǎn)的次數(shù)一定是兩正多邊形邊數(shù)的___________。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若1與1-x的倒數(shù)的差等于1-x的倒數(shù),則x=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:同步題 題型:單選題

若一個(gè)數(shù)的相反數(shù)與這個(gè)數(shù)的倒數(shù)的和等于0,則這個(gè)數(shù)是  
[     ]
A.2    
B.±1    
C.    
D.0

查看答案和解析>>

同步練習(xí)冊(cè)答案