【題目】已知:b是最小的正整數(shù),且a、b滿足(c﹣5)2+|a+b|=0,請回答問題:
(1)請直接寫出a、b、c的值:a= , b= , c= .
(2)a、b、c所對應的點分別為A、B、C,開始在數(shù)軸上運動,若點A以每秒2個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和6個單位長度的速度向右運動,假設t秒鐘過后,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB.
請問:BC﹣AB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.
【答案】
(1)解:∵b是最小的正整數(shù),
∴b=1.
∵(c﹣5)2+;a+b;=0,
∴a=﹣1,c=5;
故答案為:﹣1;1;5
(2)解:BC﹣AB的值不隨著時間t的變化而改變,其值是2,理由如下:
∵點A都以每秒1個單位的速度向左運動,點B和點C分別以每秒2個單位長度和5個單位長度的速度向右運動,
∴BC=3t+4,AB=3t+2,
∴BC﹣AB=(3t+4)﹣(3t+2)=2
【解析】(1)先根據(jù)b是最小的正整數(shù),求出b,再根據(jù)c2+|a+b|=0,即可求出a、c;(2)先求出BC=3t+4,AB=3t+2,從而得出BC﹣AB=2.
【考點精析】通過靈活運用數(shù)軸,掌握數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】已知等式:2+ =22× ,3+ =32× ,4+ =42× ,…,10+ =102× ,(a,b均為正整數(shù)),則a+b= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了考察甲、乙兩塊地小麥的長勢,分別從中抽取10株苗,測得苗高如下(單位:cm):甲:12,13,14,15,10,16,13,11,15,11;乙:11,16,17,14,13,19,6,8,10,16.要比較哪塊地小麥長得比較整齊,我們應選擇的統(tǒng)計量是( )
A. 中位數(shù)B. 平均數(shù)C. 眾數(shù)D. 方差
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面推理過程: 如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),
且∠1=∠CGD(),
∴∠2=∠CGD(等量代換).
∴CE∥BF().
∴∠=∠C().
又∵∠B=∠C(已知),
∴∠=∠B(等量代換).
∴AB∥CD().
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列二次函數(shù)中,圖象以直線x=2為對稱軸、且經(jīng)過點(0,1)的是 ( )
A.y=(x-2)2+1B.y=(x+2)2+1
C.y=(x-2)2-3D.y=(x+2)2-3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:a,b互為相反數(shù),c,d互為倒數(shù),x=3(a﹣1)﹣(a﹣2b),y=c2d+d2﹣( +c﹣2),求: ﹣ 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司組織部分員工到一博覽會的A、B、C、D、E五個展館參觀,公司所購門票種類、數(shù)量繪制成的條形和扇形統(tǒng)計圖如圖所示. 請根據(jù)統(tǒng)計圖回答下列問題:
(1)將條形統(tǒng)計圖和扇形統(tǒng)計圖在圖中補充完整;
(2)若館門票僅剩下一張,而員工小明和小華都想要,他們決定采用抽撲克牌的方法來確定,規(guī)則是:“將同一副牌中正面分別標有數(shù)字1,2,3,4的四張牌洗勻后,背面朝上放置在桌面上,每人隨機抽一次且一次只抽一張;一人抽后記下數(shù)字,不放回再由另一人抽.若小明抽得的數(shù)字比小華抽得的數(shù)字大,門票給小明,否則給小華.” 請用畫樹狀圖或列表的方法計算出小明和小華獲得門票的概率,并說明這個規(guī)則對雙方是否公平.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( ).
A. 一個游戲的中獎概率是,則做10次這樣的游戲一定會中獎
B. 一組數(shù)據(jù)6,8,7,8,8,9,10的眾數(shù)和中位數(shù)都是8
C. 為了解全國中學生的心理健康情況,應該采用普查的方式
D. 若甲組數(shù)據(jù)的方差S2甲=0.01,乙組數(shù)據(jù)的方差S2乙=0.1,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com