【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在y軸上,其坐標(biāo)為(0,4),x軸上的一動(dòng)
P從原點(diǎn)O出發(fā),沿x軸正半軸方向運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,以P為直角頂點(diǎn)
第一象限內(nèi)作等腰Rt△APB.設(shè)P點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒.
(1)填空:當(dāng)t=2時(shí),點(diǎn)B的坐標(biāo)為.
(2)在P點(diǎn)的運(yùn)動(dòng)過(guò)程中,當(dāng)AB∥x軸時(shí),求t的值;
(3)通過(guò)探索,發(fā)現(xiàn)無(wú)論P點(diǎn)運(yùn)動(dòng)到何處,點(diǎn)B始終在一直線上,試求出該直線的函數(shù)解析式.
【答案】(1)(﹣2,4);(2)t=4;(3)y=x﹣4
【解析】
(1)將點(diǎn)P的坐標(biāo)向右平移2個(gè)單位到達(dá)點(diǎn)O,此時(shí),點(diǎn)A的坐標(biāo)為:(﹣2,4),將點(diǎn)A圍繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,此時(shí)點(diǎn)B的坐標(biāo)為:(4,2),將點(diǎn)B的坐標(biāo)向右平移2個(gè)單位,即為此時(shí)的點(diǎn)B(6,2),即可求解;
(2)過(guò)點(diǎn)B作BC⊥x軸于點(diǎn)C,如圖所示.證明四邊形ABCO為長(zhǎng)方形,則AO=BC=4,則△APB為等腰直角三角形,即可求解;
(3)證明△PAO≌△BPC(AAS).則AP=BP,AO=PC,BC=PO.點(diǎn)A(0,4),點(diǎn)P(t,0),點(diǎn)B(x,y),則PC=AO=4,BC=PO=t=y,CO=PC+PO=4+y=x,即可求解.
(1)將點(diǎn)P的坐標(biāo)向右平移2個(gè)單位到達(dá)點(diǎn)O,此時(shí),點(diǎn)A的坐標(biāo)為:(﹣2,4),
將點(diǎn)A圍繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,此時(shí)點(diǎn)B的坐標(biāo)為:(4,2),
將點(diǎn)B的坐標(biāo)向右平移2個(gè)單位,即為此時(shí)的點(diǎn)B(6,2);
(2)過(guò)點(diǎn)B作BC⊥x軸于點(diǎn)C,如圖所示.
∵AO⊥x軸,BC⊥x軸,且AB∥x軸,
∴四邊形ABCO為長(zhǎng)方形,
∴AO=BC=4.
∵△APB為等腰直角三角形,
∴AP=BP,∠PAB=∠PBA=45°,
∴∠OAP=90°﹣∠PAB=45°,
∴△AOP為等腰直角三角形,
∴OA=OP=4,t=4÷1=4(秒);
(3)∵△APB為等腰直角三角形,
∴∠APO+∠BPC=180°﹣90°=90°.
又∵∠PAO+∠APO=90°,∴∠PAO=∠BPC.
∠PAO=∠BPC,
在△PAO和△BPC中,∠AOP=∠PCB=90°,
∴△PAO≌△BPC(AAS).
AP=BP,
∴AO=PC,BC=PO.
∵點(diǎn)A(0,4),點(diǎn)P(t,0),點(diǎn)B(x,y),
∴PC=AO=4,BC=PO=t=y,CO=PC+PO=4+y=x,
∴y=x﹣4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等腰Rt△ABC中,∠BAC=90°.點(diǎn)D從點(diǎn)B出發(fā)在線段BC移動(dòng),以AD為腰作等腰Rt△ADE,∠DAE=90°.連接CE.
⑴如圖,求證:△ACE≌△ABD;
⑵求證:BD2+CD2=2AD2;
⑶若AB=4,試問(wèn):△DCE的面積有沒(méi)有最大值,如沒(méi)有請(qǐng)說(shuō)明理由,如有請(qǐng)求出最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明的爸爸在池邊開(kāi)了一塊四邊形土地種蔬菜,爸爸讓小明計(jì)算一下土地的面積,以便計(jì)算產(chǎn)量.小明找了米尺和測(cè)角儀,測(cè)得AB=3米,BC=4米,CD=12米,DA=13米,∠B=90°.
⑴若連接AC,試證明:△ACD是直角三角形;
⑵請(qǐng)你幫小明計(jì)算這塊土地的面積為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以AB為斜邊的Rt△ABC的每條邊為邊作三個(gè)正方形,分別是正方形ABMN,正方形BCPQ,正方形ACEF,且邊EF恰好經(jīng)過(guò)點(diǎn)N.若S3=S4=6,則S1+S5=_____.(注:圖中所示面積S表示相應(yīng)封閉區(qū)域的面積,如S3表示△ABC的面積)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某實(shí)驗(yàn)中學(xué)為了解學(xué)生“最適合自己的考前減壓方式”,在九年級(jí)范圍內(nèi)開(kāi)展了一次抽樣調(diào)查,學(xué)生必須在四類選項(xiàng)中選擇一項(xiàng),小明根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上信息解答下列問(wèn)題:
(1)這次抽樣調(diào)查中,抽查的學(xué)生人數(shù)為______人.
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)扇形統(tǒng)計(jì)圖中“其他”所對(duì)應(yīng)扇形圓心角為______度.
(4)若實(shí)驗(yàn)中學(xué)九年級(jí)有700人,請(qǐng)估計(jì)采用“聽(tīng)音樂(lè)”作為減壓方式的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“金山”超市現(xiàn)有甲、乙兩種糖果若干kg,兩種糖果的售價(jià)和進(jìn)價(jià)如表
糖果 | 甲種 | 乙種 |
售價(jià) | 36元/kg | 20元/kg |
進(jìn)價(jià) | 30元/kg | 16元/kg |
(1)超市準(zhǔn)備用甲、乙兩種糖果混合成雜拌糖出售,混合后糖果的售價(jià)是27.2元/kg,現(xiàn)要配制這種雜拌糖果100/kg,需要甲、乙兩種糖果各多少千克?
(2)“六一”兒童節(jié)前夕,超市準(zhǔn)備用5000元購(gòu)進(jìn)甲、乙兩種糖果共200kg,如何進(jìn)貨才能使這批糖果獲得最大利潤(rùn),最大利潤(rùn)是多少?(注:進(jìn)貨量只能為整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,且點(diǎn)B與點(diǎn)C的坐標(biāo)分別為B(3,0).C(0,3),點(diǎn)M是拋物線的頂點(diǎn).
(1)求二次函數(shù)的關(guān)系式;
(2)點(diǎn)P為線段MB上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PD⊥x軸于點(diǎn)D.若OD=m,△PCD的面積為S,試判斷S有最大值或最小值?并說(shuō)明理由;
(3)在MB上是否存在點(diǎn)P,使△PCD為直角三角形?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AD=10,CD=15,E是邊CD上一點(diǎn),且DE=5,P是射線AD上一動(dòng)點(diǎn),過(guò)A,P,E三點(diǎn)的⊙O交直線AB于點(diǎn)F,連結(jié)PE,EF,PF,設(shè)AP=m.
(1)當(dāng)m=6時(shí),求AF的長(zhǎng).
(2)在點(diǎn)P的整個(gè)運(yùn)動(dòng)過(guò)程中.
①tan∠PFE的值是否改變?若不變,求出它的值;若改變,求出它的變化范圍.
②當(dāng)矩形ABCD恰好有2個(gè)頂點(diǎn)落在⊙O上時(shí),求m的值.
(3)若點(diǎn)A,H關(guān)于點(diǎn)O成中心對(duì)稱,連結(jié)EH,CH.當(dāng)△CEH是等腰三角形時(shí),求出所有符合條件的m的值.(直接寫(xiě)出答案即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(題文)如圖,已知正方形ABCD,點(diǎn)E是BC邊的中點(diǎn),DE與AC相交于點(diǎn)F,連接BF,下列結(jié)論:①S△ABF=S△ADF;②S△CDF=2S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正確的是( )
A. ①②③ B. ②③ C. ①④ D. ①②④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com