如圖,△ABC中,AB=BC,BE⊥AC于點E,AD⊥BC于點D,∠BAD=45°,AD與BE交于點F,連接CF.
(1)求證:BF=2AE;
(2)若CD=,求AD的長.
(1)見解析    (2)2+

試題分析:(1)先判定出△ABD是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得AD=BD,再根據(jù)同角的余角相等求出∠CAD=∠CBE,然后利用“角邊角”證明△ADC和△BDF全等,根據(jù)全等三角形對應邊相等可得BF=AC,再根據(jù)等腰三角形三線合一的性質(zhì)可得AC=2AF,從而得證。
(2)根據(jù)全等三角形對應邊相等可得DF=CD,然后利用勾股定理列式求出CF,再根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AF=CF,然后根據(jù)AD=AF+DF代入數(shù)據(jù)即可得解!
解:(1)證明:∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形!郃D=BD。
∵BE⊥AC,AD⊥BC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°!唷螩AD=∠CBE。
在△ADC和△BDF中,∠CAD=∠CBF,AD=BD,∠ADC=∠BDF=90°,
∴△ADC≌△BDF(ASA)!郆F=AC。
∵AB=BC,BE⊥AC,∴AC=2AE!郆F=2AE。
(2)∵△ADC≌△BDF,∴DF=CD=。
在Rt△CDF中,。
∵BE⊥AC,AE=EC,∴AF=CF=2。
∴AD=AF+DF=2+。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在△ABC中,D是BC延長線上一點,∠B=40°,∠ACD=120°,則∠A等于
A.60°B.70°C.80°D.90°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

(2013年廣東梅州3分)如圖,已知△ABC是腰長為1的等腰直角三形,以Rt△ABC的斜邊AC為直角邊,畫第二個等腰Rt△ACD,再以Rt△ACD的斜邊AD為直角邊,畫第三個等腰Rt△ADE,…,依此類推,則第2013個等腰直角三角形的斜邊長是   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,圖1、圖2、圖3分別表示甲、乙、丙三人由甲A地到B地的路線圖(箭頭表示行進的方向).其中E為AB的中點,AH>HB,判斷三人行進路線長度的大小關(guān)系為
A.甲<乙<丙B.乙<丙<甲C.丙<乙<甲D.甲=乙=丙

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在△ABC中∠A=60°,BM⊥AC于點M,CN⊥AB于點N,P為BC邊的中點,連接PM,PN,則下列結(jié)論:①PM=PN;②;③△PMN為等邊三角形;④當∠ABC=45°時,BN=PC.其中正確的個數(shù)是

A.1個         B.2個        C.3個        D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

設(shè)a、b是直角三角形的兩條直角邊,若該三角形的周長為6,斜邊長為2.5,則ab的值是
A.1.5B.2C.2.5D.3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)已知在△ABC中,AB=,AC=,BC=5,則△ABC的形狀為       .(直接寫出結(jié)果)
(2)試在4×4的方格紙上畫出△ABC,使它的頂點都在方格的頂點上.(每個小方格的邊長為1)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知:如圖,以Rt△ABC的三邊為斜邊分別向外作等腰直角三角形,若斜邊AB=5,則圖中陰影部分的面積為  

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在Rt△ABC中,∠ACB=90°,∠A=α,將△ABC繞點C按順時針方向旋轉(zhuǎn)后得到△EDC,此時點D在AB邊上,則旋轉(zhuǎn)角的大小為     

查看答案和解析>>

同步練習冊答案