22、已知:如圖,AB是⊙O的直徑,BC是和⊙O相切于點(diǎn)B的切線,⊙O的弦AD平行于OC.
求證:DC是⊙O的切線.
分析:連接OD,要證明DC是⊙O的切線,只要證明∠ODC=90°即可.根據(jù)題意,可證△OCD≌△OCB,即可得∠CDO=∠CBO=90°,由此可證DC是⊙O的切線.
解答:證明:連接OD;
∵AD平行于OC,
∴∠COD=∠ODA,∠COB=∠A;
∵∠ODA=∠A,
∴∠COD=∠COB,OC=OC,OD=OB,
∴△OCD≌△OCB,
∴∠CDO=∠CBO=90°.
∴DC是⊙O的切線.
點(diǎn)評(píng):本題考查的是切線的判定及全等三角形的判定與性質(zhì).要證某線是圓的切線,已知此線過(guò)圓上某點(diǎn),連接圓心和這點(diǎn)(即為半徑),再證垂直即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•門(mén)頭溝區(qū)一模)已知:如圖,AB是⊙O的直徑,AC是⊙O的弦,M為AB上一點(diǎn),過(guò)點(diǎn)M作DM⊥AB,交弦AC于點(diǎn)E,交⊙O于點(diǎn)F,且DC=DE.
(1)求證:DC是⊙O的切線;
(2)如果DM=15,CE=10,cos∠AEM=
513
,求⊙O半徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•昆明)已知:如圖,AB是⊙O的直徑,直線MN切⊙O于點(diǎn)C,AD⊥MN于D,AD交⊙O于E,AB的延長(zhǎng)線交MN于點(diǎn)P.求證:AC2=AE•AP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•平谷區(qū)二模)已知,如圖,AB是⊙O的直徑,點(diǎn)E是
AD
的中點(diǎn),連接BE交AC于點(diǎn)G,BG的垂直平分線CF交BG于H交AB于F點(diǎn).
(1)求證:BC是⊙O的切線;
(2)若AB=8,BC=6,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,AB是⊙O的直徑,BC為⊙O的切線,過(guò)點(diǎn)B的弦BD⊥OC交⊙O于點(diǎn)D,垂足為E.
(1)求證:CD是⊙O的切線;
(2)當(dāng)BC=BD,且BD=12cm時(shí),求圖中陰影部分的面積(結(jié)果不取近似值).

查看答案和解析>>

同步練習(xí)冊(cè)答案