【題目】如圖,直線與雙曲線交于A點,且點A的橫坐標是4.雙曲線上有一動點Cmn, .過點A軸垂線,垂足為B,過點C軸垂線,垂足為D,聯(lián)結(jié)OC

1)求的值;

2)設(shè)的重合部分的面積為S,求Sm的函數(shù)關(guān)系;

3)聯(lián)結(jié)AC,當?shù)冢?/span>2)問中S的值為1時,求的面積.

【答案】1;(2;(3.

【解析】

1)由題意列出關(guān)于k的方程,求出k的值,即可解決問題.

2)借助函數(shù)解析式,運用字母m表示DE、OD的長度,即可解決問題.

3)首先求出m的值,求出△COD,△AOB的面積;求出梯形ABDC的面積,即可解決問題.

1)設(shè)A點的坐標為(4,);

由題意得:,解得:k=8

k的值為8

2)如圖,設(shè)C點的坐標為Cm,n).

n=m,即DE=m;而OD=m,

S=ODDE=m=m2,

S關(guān)于m的函數(shù)解析式是S=m2

3)當S=1時,m2=1,解得m=2-2(舍去),

∵點C在函數(shù)y=的圖象上,

CD==4;

由(1)知:OB=4AB=2;BD=4-2=2

S梯形ABDC (4+2)×2=6,

SAOB×4×24

SCOD×2×4=4;

SAOC=S梯形ABDC+SCOD-SAOB=6+4-4=6

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點B坐標為(-2,1).

1)請在圖中畫出將四邊形ABCD關(guān)于y軸對稱后的四邊形ABCD,并直接寫出點A、B、C、D的坐標;

2)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】龍人文教用品商店欲購進兩種筆記本,用160元購進的種筆記本與用240元購進的種筆記本數(shù)量相同,每本種筆記本的進價比每本種筆記本的進價貴10元.

(1)兩種筆記本每本的進價分別為多少元?

(2)若該商店準備購進兩種筆記本共100本,且購買這兩種筆記本的總價不超過2650元,則至少購進種筆記本多少本?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校準備購買A、B兩種獎品,獎勵成績優(yōu)異的同學已知購買1A獎品和1B獎品共需18元;購買30A獎品和20B獎品共需480元.

(1)A、B兩種獎品的單價分別是多少元?

(2)如果學校購買兩種獎品共100件,總費用不超過850元,那么最多可以購買A獎品多少件.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,ABC中,∠A,PBC邊上的一點,是點P關(guān)于AB、AC的對稱點,連結(jié),分別交AB、AC于點D、E.

①若,求的度數(shù);

②請直接寫出∠A的數(shù)量關(guān)系:___________________________;

(2)如圖2,在ABC中,若∠BAC,用三角板作出點P關(guān)于AB、AC的對稱點、,(不寫作法,保留作圖痕跡),試判斷點,與點A是否在同一直線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司招聘人才,對應(yīng)聘者分別進行閱讀能力、專業(yè)知識、表達能力三項測試,并將三項測試得分按352的比例確定每人的最終成績,現(xiàn)欲從甲乙兩選手中錄取一人,已知兩人的各項測試得分如下表(單位:分)

閱讀

專業(yè)

表達

93

86

73

95

81

79

①請通過相關(guān)的計算說明誰將被錄用?

②請對落選者今后的應(yīng)聘提些合理的建議.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知拋物線y=ax2+bx+c過點A(﹣1,0),且經(jīng)過直線y=x﹣3與坐標軸的兩個交點B、C.

(1)求拋物線的表達式;

(2)若點M在第四象限內(nèi)且在拋物線上,有OMBC,垂足為D,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個三位數(shù),如果把它的個位數(shù)字與百位數(shù)字交換位置,那么所得的新數(shù)比原數(shù)小99,且各位數(shù)字之和為14,十位數(shù)字是個位數(shù)字與百位數(shù)字之和.求這個三位數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下圖是一個橫斷面為拋物線形狀的拱橋,當水面寬4 m,拱頂(拱橋洞的最高點)離水面2 m,當水面下降1 m,水面的寬度為_____m.

查看答案和解析>>

同步練習冊答案