【題目】已知:如圖,⊙O內(nèi)切于ABC,BOC=105°,ACB=90°,AB=20cm.求BC、AC的長.

【答案】BC、AC的長分別是10cm、cm.

【解析】

先根據(jù) O內(nèi)切于△ABC,得出∠ABO=∠CBO,∠BCO=∠ACO,再根據(jù)∠ACB=90°,得出∠BCO=45°,再根據(jù)三角形內(nèi)角和定理得出∠OBC的度數(shù),從而求出∠ABC∠A的度數(shù),即可求出BC的長,再根據(jù)勾股定理即可求出AC.

解:O內(nèi)切于△ABC,

∴∠ABO=∠CBO,∠BCO=∠ACO,

∵∠ACB=90°,

∴∠BCO=×90°=45°,

∵∠BOC=105°,

∴∠CBO=180°45°105°=30°,

∴∠ABC=2∠CBO=60°,

∴∠A=30°,

∴BC=AB=×20=10cm,

∴AC=

∴BC、AC的長分別是10cm、cm.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的內(nèi)切圓,切點分別為D、E、F,A=80°,點P為⊙O上任意一點(不與E、F重合),則∠EPF=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的材料,回答問題:

解方程x4-5x2+4=0,這是一個一元四次方程,根據(jù)該方程的特點,它的解法通常是:

設(shè)x2=y,那么x4=y2,于是原方程可變?yōu)?/span>y2-5y+4=0 ①,解得y1=1,y2=4.

當(dāng)y=1時,x2=1,x=±1;當(dāng)y=4時,x2=4,x=±2;

∴原方程有四個根:x1=1,x2=-1,x3=2,x4=-2.

(1)在由原方程得到方程①的過程中,利用 法(把未知數(shù)x換為 y達到降次的目的.

(2)解方程:(x2+3x)2+5(x2+3x)-6=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸是直線x=-1,有以下結(jié)論:①abc>0;4ac<b22a+b=0;a-b+c>0.其中正確的結(jié)論的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA、PB、CD分別切⊙OA、B、E,CDPA、PBC、D兩點,若∠P=40°,則∠PAE+PBE的度數(shù)為( 。

A. 50° B. 62° C. 66° D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于頻率與概率有下列幾種說法:①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“拋一枚硬幣正面朝上的概率為”表示每拋兩次就有一次正面朝上;③“某彩票中獎的概率是1%”表示買10張該種彩票不可能中獎;④“拋一枚硬幣正面朝上的概率為”表示隨著拋擲次數(shù)的增加,“拋出正面朝上”這一事件發(fā)生的頻率穩(wěn)定在附近,正確的說法是( )

A. ②④B. ②③C. ①④D. ①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,CDAB,垂足為D,AC=20,BC=15.動點PA開始,以每秒2個單位長的速度沿AB方向向終點B運動,過點P分別作AC、BC邊的垂線,垂足為E、F.

(1)ABCD的長;

(2)當(dāng)矩形PECF的面積最大時,求點P運動的時間t;

(3)以點C為圓心,r為半徑畫圓,若圓C與斜邊AB有且只有一個公共點時,求r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣2x2+4xx軸交于點O、A,把拋物線在x軸及其上方的部分記為C1,將C1y鈾為對稱軸作軸對稱得到C2,C2x軸交于點B,若直線yx+mC1,C2共有3個不同的交點,則m的取值范圍是(

A. 0<m< B. m

C. 0m D. mm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】9分)如圖,在平面直角坐標(biāo)系中,點A,1)、B20)、O0,0),反比例函數(shù)y=圖象經(jīng)過點A

1)求k的值;

2)將△AOB繞點O逆時針旋轉(zhuǎn)60°,得到△COD,其中點A與點C對應(yīng),試判斷點D是否在該反比例函數(shù)的圖象上?

查看答案和解析>>

同步練習(xí)冊答案