【題目】如圖,用大小相同的小正方體從左至右擺放成幾何體,若小正方體的棱長為1cm,則第①個幾何體的表面積為6cm2,第②個幾何體的表面積為18cm2,第③個幾何體的表面積為36cm2,第④個幾何體的表面積為60cm2,…,按照這樣的規(guī)律,第n個幾何體的表面積為________cm2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著“三農(nóng)”問題的解決,某農(nóng)民近兩年的年收入發(fā)生了明顯變化,已知前年和去年的收入分別是60000元和80000元,下面是依據(jù)①②③三種農(nóng)作物每種作物每年的收入占該年年收入的比例繪制的扇形統(tǒng)計圖.依據(jù)統(tǒng)計圖得出的以下四個結(jié)論正確的是( 。
A. ①的收入去年和前年相同
B. ③的收入所占比例前年的比去年的大
C. 去年②的收入為2.8萬
D. 前年年收入不止①②③三種農(nóng)作物的收入
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了完成“舌尖上的中國”的錄制,節(jié)目組隨機(jī)抽查了某省“A.奶制品類,B.肉制品類,C.面制品類,D.豆制品類”四類特色美食若干種,將收集的數(shù)據(jù)整理并繪制成下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)圖中信息完成下列問題:
(1)這次抽查了四類特色美食共 種,扇形統(tǒng)計圖中a= ,扇形統(tǒng)計圖中A部分圓心角的度數(shù)為 ;
(2)補(bǔ)全條形統(tǒng)計圖;
(3)如果全省共有這四類特色美食120種,請你估計約有多少種屬于“豆制品類”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD由四個相同的大長方形,四個相同的小長形以及一個小正方形組成,其中四個大長方形的長和寬分別是小長方形長和寬的2倍,若中間小正方形的面積為1,則大正方形ABCD的面積是( )
A.36B.25C.20D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計算 27a8 a3 9a 2 的順序不正確的是( )
A.(27 9)a83 2B.(27a8 a3 ) 9a 2
C.27a8 (a3 9a 2 )D.(27a8 9a 2 ) a3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于M,交AC于N.
(1)若∠ABC=70°,則∠MNA的度數(shù)是__.
(2)連接NB,若AB=8cm,△NBC的周長是14cm.
①求BC的長;
②在直線MN上是否存在P,使由P、B、C構(gòu)成的△PBC的周長值最小?若存在,標(biāo)出點P的位置并求△PBC的周長最小值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠BAE+∠AED=180°,∠1=∠2,那么∠F=∠G嗎?為什么?
解:因為∠BAE+∠AED=180°( 已知)
所以AB∥CD________
所以∠BAE=∠AEC________
因為∠1=∠2( 已知)
所以∠BAE—∠1=∠AEC—∠2(等式性質(zhì))
即∠3=∠4
所以AF∥EG________,
所以∠F=∠G________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,是的垂直平分線上一點,是軸上一點且.
(1)若,,求點的坐標(biāo);
(2)在(1)的條件下,求證:;
(3)如圖2,已知,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在△ABC中,∠A<90°,P是BC邊上的一點,P1,P2是點P關(guān)于AB、AC的對稱點,連結(jié)P1P2,分別交AB、AC于點D、E.
(1)若∠A=52°,求∠DPE的度數(shù);
(2)如圖2,在△ABC中,若∠BAC=90°,用三角板作出點P關(guān)于AB、AC的對稱點P1、P2,(不寫作法,保留作圖痕跡),試判斷點P1,P2與點A是否在同一直線上,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com