【題目】如圖,已知:EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度數(shù).
解:∵EF∥AD(已知)
∴∠2=_________( )
∵∠1=∠2(已知)
∴∠1=__________( )
∴DG∥BA ( )
又∵∠BAC=70°(已知)
∴∠AGD=_________°( )
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一塊三角形模具的陰影部分已破損.回答下列問題:
(1)只要從模具片中度量出哪些邊、角,就可以到店鋪加工一塊與原來的模具△ABC的形狀和大小完全相同的△A′B′C′模具?請簡要說明理由.
(2)按尺規(guī)作圖的要求,在框內(nèi)正確作出△A′B′C′圖形,保留作圖痕跡,不寫作法和證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某天早上,住在同一小區(qū)的小雨、小靜兩人從小區(qū)出發(fā),沿相同的路線步行到學校上學.小雨出發(fā)5分鐘后,小靜才出發(fā),同時小雨發(fā)現(xiàn)自己沒帶手表,于是決定按原速回家拿手表小雨拿到手表后,擔心會遲到,于是速度提高了20%,結(jié)果比小靜早2分鐘到校.小雨取手表的時間忽略不計,在整個過程中,小靜始終保持勻速運動,小雨提速前后也分別保持勻速運動,如圖所示是小雨、小靜之間的距離(米)與小雨離開小區(qū)的時間(分鐘)之間的函數(shù)圖像,則小區(qū)到學校的距離是_______米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)y1=(k1﹥0)與一次函數(shù)y2=k2x+1(k2≠0)相交于A、B兩點,AC⊥x軸于點C,若△OAC的面積為1,且tan∠AOC=2.
(1)求出反比例函數(shù)與一次函數(shù)的解析式;
(2)請直接寫出B點的坐標,并指出當x為何值時,反比例函數(shù)y1的值大于一次函數(shù)y2的值?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合題。
(1)如圖,在方格紙中先通過________,由圖形A得到圖形B,再由圖形B先________(怎樣平移),再________(怎樣旋轉(zhuǎn))得到圖形C(對于平移變換要求回答出平移的方向和平移的距離;對于旋轉(zhuǎn)變換要求回答出旋轉(zhuǎn)中心、旋轉(zhuǎn)方向和旋轉(zhuǎn)角度);
(2)如圖,如果點P、P3的坐標分別為(0,0)、(2,1),寫出點P2的坐標是________;
(3)圖形B能繞某點Q順時針旋轉(zhuǎn)90°得到圖形C,則點Q的坐標是________;
(4)圖形A能繞某點R順時針旋轉(zhuǎn)90°得到圖形C,則點R的坐標是________; 注:方格紙中的小正方形的邊長為1個單位長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,A(1,0)、點B在y軸上,將三角形OAB沿x軸負方向平移,平移后的圖形為三角形DEC,且點C的坐標為(﹣3,2).
(1)直接寫出點E的坐標 ;
(2)在四邊形ABCD中,點P從點B出發(fā),沿“BC→CD”移動.若點P的速度為每秒1個單位長度,運動時間為t秒,回答下列問題:
①當t= 秒時,點P的橫坐標與縱坐標互為相反數(shù);
②求點P在運動過程中的坐標,(用含t的式子表示,寫出過程);
③當點P運動到CD上時,設∠CBP=x°,∠PAD=y°,∠BPA=z°,試問 x,y,z之間的數(shù)量關系能否確定?若能,請用含x,y的式子表示z,寫出過程;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,點E在△ABC外部,點D在BC邊上,DE交AC于F,若∠1=∠2,∠C=∠E, AE=AC,
(1)求證: △ABC≌△ADE;
(2) 求證:∠2=∠3;
(3)當∠2=90°時,判斷△ABD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣4x+3.
(1)求函數(shù)圖象的對稱軸、頂點坐標、與坐標軸交點的坐標,并畫出函數(shù)的大致圖象;
(2)根據(jù)圖象直接寫出函數(shù)值y為負數(shù)時,自變量x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com