【題目】如圖,等邊△ABC的邊長為3cm,點N在AC邊上,AN=1cm.△ABC邊上的動點M從點A出發(fā),沿A→B→C運動,到達點C時停止.設點M運動的路程為xcm,MN的長為ycm.
小西根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小西的探究過程,請補充完整:
(1)通過取點、畫圖、測量,得到了y與x的幾組對應值;
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 |
y/cm | 1 | 0.87 | 1 | 1.32 | 2.18 | 2.65 | 2.29 | 1.8 | 1.73 | 1.8 | 2 |
(2)在平面直角坐標系中,描出補全后的表中各組數(shù)值所對應的點,畫出該函數(shù)的圖象;
(3) 結合函數(shù)圖象,解決問題:當MN=2cm時,點M運動的路程為 cm.
科目:初中數(shù)學 來源: 題型:
【題目】(2017甘肅省天水市)△ABC和△DEF是兩個全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點E與△ABC的斜邊BC的中點重合,將△DEF繞點E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點P,線段EF與射線CA相交于點Q.
(1)如圖①,當點Q在線段AC上,且AP=AQ時,求證:△BPE≌△CQE;
(2)如圖②,當點Q在線段CA的延長線上時,求證:△BPE∽△CEQ;并求當BP=2,CQ=9時BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,若O為BC邊的中點,則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結論,解決如下問題:如圖,在矩形DEFG中,已知DE=4,EF=3,點P在以DE為直徑的半圓上運動,則的最小值為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點E,在⊙O的切線CM上取一點P,使得∠CPB=∠COA.
(1)求證:PB是⊙O的切線;
(2)若CD=6,∠AOC=60°,求PB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:⊙O的半徑為13cm,弦AB=24cm,弦CD=10cm,AB//CD.則這兩條平行弦AB,CD之間的距離是 ________________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,
(1)作AB和BC的垂直平分線交于點O;
(2)以點O為圓心,OA長為半徑作圓;
(3)⊙O分別與AB和BC的垂直平分線交于點M,N;
(4)連接AM,AN,CM,其中AN與CM交于點P.
根據(jù)以上作圖過程及所作圖形,下列四個結論中,
①; ②;
③點O是的外心 ; ④點P是的內(nèi)心.
所有正確結論的序號是___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,,將點C關于直線AB對稱得到點D,作射線BD與CA的延長線交于點E,在CB的延長線上取點F,使得BF=DE,連接AF.
備用圖
(1)依題意補全圖形;
(2)求證:AF=AE;
(3)作BA的延長線與FD的延長線交于點P,寫出一個∠ACB的值,使得AP=AF成立,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=﹣x2+2mx﹣m2+1的對稱軸是直線x=1.
(1)求拋物線的表達式;
(2)點D(n,y1),E(3,y2)在拋物線上,若y1<y2,請直接寫出n的取值范圍;
(3)設點M(p,q)為拋物線上的一個動點,當﹣1<p<2時,點M關于y軸的對稱點都在直線y=kx﹣4的上方,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB=AC,BD⊥AC,垂足為E,點F在BD的延長線上,且DF=DC,連接AF、CF.
(1)求證:∠BAC=2∠DAC;
(2)若AF=10,BC=4,求tan∠BAD的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com