【題目】如圖,等邊ABC的邊長為3cm,點NAC邊上,AN1cmABC邊上的動點M從點A出發(fā),沿ABC運動,到達點C時停止.設點M運動的路程為xcmMN的長為ycm

小西根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.

下面是小西的探究過程,請補充完整:

(1)通過取點、畫圖、測量,得到了yx的幾組對應值;

x/cm

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

y/cm

1

0.87

1

1.32

2.18

2.65

2.29

1.8

1.73

1.8

2

(2)在平面直角坐標系中,描出補全后的表中各組數(shù)值所對應的點,畫出該函數(shù)的圖象;

(3) 結合函數(shù)圖象,解決問題:當MN2cm時,點M運動的路程為 cm

【答案】(1)1.73,2;(2)見解析;(3)2.346

【解析】

(1)根據(jù)表中x、y的對應值,可得到結論;

(2)按照自變量由小到大,利用平滑的曲線連結各點即可,圖象見解析;

(3)在所畫的函數(shù)圖象上找出函數(shù)值為2所對應的自變量的值即可.

(1)通過取點、畫圖、測量可得x=-2時,y=1.73cm;x=4時,y=2 cm;故答案為1.73,2;

(2)該函數(shù)的圖象如圖所示;

(3)當y=2時所對應的點如圖所示,x的值為2.346

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】2017甘肅省天水市)△ABC和△DEF是兩個全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點E與△ABC的斜邊BC的中點重合,將△DEF繞點E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點P,線段EF與射線CA相交于點Q

1)如圖①,當點Q在線段AC上,且AP=AQ時,求證:△BPE≌△CQE;

2)如圖②,當點Q在線段CA的延長線上時,求證:△BPE∽△CEQ;并求當BP=2,CQ=9BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,若OBC邊的中點,則必有:AB2AC22AO22BO2成立.依據(jù)以上結論,解決如下問題:如圖,在矩形DEFG中,已知DE4EF3,點P在以DE為直徑的半圓上運動,則的最小值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB于點E,在⊙O的切線CM上取一點P,使得∠CPB=COA

1)求證:PB是⊙O的切線;

2)若CD=6,∠AOC=60°,求PB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:⊙O的半徑為13cm,弦AB=24cm,弦CD=10cm,AB//CD.則這兩條平行弦AB,CD之間的距離是 ________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,

1)作ABBC的垂直平分線交于點O

2)以點O為圓心,OA長為半徑作圓;

3)⊙O分別與ABBC的垂直平分線交于點MN;

4)連接AM,AN,CM,其中ANCM交于點P.

根據(jù)以上作圖過程及所作圖形,下列四個結論中,

; ;

③點O的外心 ; ④點P的內(nèi)心.

所有正確結論的序號是___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰△ABC中,AB=AC,,將點C關于直線AB對稱得到點D,作射線BDCA的延長線交于點E,在CB的延長線上取點F,使得BF=DE,連接AF.

備用圖

1)依題意補全圖形;

2)求證:AF=AE;

3)作BA的延長線與FD的延長線交于點P,寫出一個∠ACB的值,使得AP=AF成立,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=﹣x2+2mx﹣m2+1的對稱軸是直線x=1.

(1)求拋物線的表達式;

(2)點D(n,y1),E(3,y2)在拋物線上,若y1y2,請直接寫出n的取值范圍;

(3)設點M(p,q)為拋物線上的一個動點,當﹣1p2時,點M關于y軸的對稱點都在直線y=kx﹣4的上方,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB=AC,BDAC,垂足為E,點FBD的延長線上,且DF=DC,連接AFCF.

(1)求證:∠BAC=2DAC;

(2)AF10,BC4,求tanBAD的值.

查看答案和解析>>

同步練習冊答案