【題目】如圖,在四邊形ABCD中,∠A=∠C=90°,BE平分∠B,DF平分∠D,求證:BE∥DF.

【答案】證明:∵在四邊形ABCD中,∠A=∠C=90°, ∴∠ABC+∠ADC=180°,
∵BE平分∠B,DF平分∠D,
∴∠EBF+∠FDC=90°,
∵∠C=90°,
∴∠DFC+∠FDC=90°,
∴∠EBF=∠DFC,
∴BE∥DF
【解析】根據(jù)角平分線的定義和四邊形的內(nèi)角和進(jìn)行解答即可.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解平行線的判定(同位角相等,兩直線平行;內(nèi)錯(cuò)角相等,兩直線平行;同旁內(nèi)角互補(bǔ),兩直線平行),還要掌握多邊形內(nèi)角與外角(多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n-2)180°.多邊形的外角和定理:任意多邊形的外角和等于360°)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)廣場(chǎng)上有旗桿如圖1所示,在學(xué)習(xí)解直角三角形以后,數(shù)學(xué)興趣小組測(cè)量了旗桿的高度.如圖2,某一時(shí)刻,旗桿AB的影子一部分落在平臺(tái)上,另一部分落在斜坡上,測(cè)得落在平臺(tái)上的影長(zhǎng)BC為4米,落在斜坡上的影長(zhǎng)CD為3米,AB⊥BC,同一時(shí)刻,光線與水平面的夾角為72°,1米的豎立標(biāo)桿PQ在斜坡上的影長(zhǎng)QR為2米,求旗桿的高度(結(jié)果精確到0.1米).(參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD是角平分線,E是AB上一點(diǎn),AE=AC,EF∥BC交AC于F.下列結(jié)論
①△ADC≌△ADE;
②CE平分∠DEF;
③AD垂直平分CE.
其中正確的個(gè)數(shù)有( )

A.3
B.2
C.1
D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為深化義務(wù)教育課程改革,滿足學(xué)生的個(gè)性化學(xué)習(xí)需求,某校就“學(xué)生對(duì)知識(shí)拓展,體育特長(zhǎng)、藝術(shù)特長(zhǎng)和實(shí)踐活動(dòng)四類選課意向”進(jìn)行了抽樣調(diào)查(每人選報(bào)一類),繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息,解答下列問題:

(1)求扇形統(tǒng)計(jì)圖中m的值;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)已知該校有800名學(xué)生,計(jì)劃開設(shè)“實(shí)踐活動(dòng)類”課程每班安排20人,問學(xué)校開設(shè)多少個(gè)“實(shí)踐活動(dòng)類”課程的班級(jí)比較合理?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把拋物線y=﹣2x2向左平移3個(gè)單位長(zhǎng)度所得圖象的解析式是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是邊長(zhǎng)為2的等邊三角形,D是CA延長(zhǎng)線上一點(diǎn),以BD為邊長(zhǎng)作等邊三角形BDE,連接AE.求:
①∠EAD的度數(shù);
②求AE﹣AD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCA1B1C1相似,且相似比為13,則ABCA1B1C1的周長(zhǎng)比為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)P(2x+4,x﹣3)在第四象限,則x的取值范圍表示在數(shù)軸上,正確的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在鈍角△ABC中,點(diǎn)D是BC的中點(diǎn),分別以AB和AC為斜邊向△ABC的外側(cè)作等腰直角三角形ABE和等腰直角三角形ACF,M、N分別為AB、AC的中點(diǎn),連接DM、DN、DE、DF、EM、EF、FN.求證:

(1)△EMD≌△DNF;

(2)△EMD∽△EAF;

(3)DE⊥DF.

查看答案和解析>>

同步練習(xí)冊(cè)答案