【題目】如圖,在平面直角坐標(biāo)系中,已知,其中a,b滿足

1)填空:a= ,b= ;

2)如果在第三象限內(nèi)有一點(diǎn)C(-2,m),請(qǐng)用含m的式子表示△ABC的面積;

3)在⑵條件下,當(dāng)時(shí),在y軸上有一點(diǎn)P,使得△BMP的面積與△ABM的面積相等,請(qǐng)求出點(diǎn)P的坐標(biāo).

【答案】1-1,3;(2-2m;(3)(0,0.3)或(0,-2.1).

【解析】

1)根據(jù)非負(fù)數(shù)性質(zhì)可得ab的值;

2)根據(jù)三角形面積公式列式整理即可;

3)先根據(jù)(2)計(jì)算SABM,再分兩種情況:當(dāng)點(diǎn)Py軸正半軸上時(shí)、當(dāng)點(diǎn)Py軸負(fù)半軸上時(shí),利用割補(bǔ)法表示出SBMP,根據(jù)SBMP=SABM列方程求解可得.

解:(1)∵|a+1|+b-32=0

a+1=0b-3=0,

解得:a=-1b=3,

故答案為:-1,3;

2過點(diǎn)MMNx軸于點(diǎn)N,


A-10),B3,0),

AB=1+3=4,

又∵點(diǎn)M-2m)在第三象限

MN=|m|=-m

SABM=ABMN=×4×(-m=-2m;

3)當(dāng)m=-時(shí),M-2,-

SABM=-2×(-=3,

點(diǎn)P有兩種情況:①當(dāng)點(diǎn)Py軸正半軸上時(shí),設(shè)點(diǎn)p0,k

SBMP=5×(+k-×2×(+k-×5×-×3×k=k+

SBMP=SABM,

k+=3,

p>解得:k=0.3,

∴點(diǎn)P坐標(biāo)為(0,0.3);

②當(dāng)點(diǎn)Py軸負(fù)半軸上時(shí),設(shè)點(diǎn)p0,n),

SBMP=-5n-×2×(-n--×5×-×3×(-n=-n-,

SBMP=SABM,

-n-=3,

解得:n=-2.1,

∴點(diǎn)P坐標(biāo)為(0,-2.1),

故點(diǎn)P的坐標(biāo)為(00.3)或(0,-2.1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)在今年423日的世界讀書日開展人人喜愛閱讀,爭(zhēng)當(dāng)閱讀能手活動(dòng),同學(xué)們積極響應(yīng),涌現(xiàn)出大批的閱讀能手.為了激勵(lì)同學(xué)們的閱讀熱情,養(yǎng)成每天閱讀的好習(xí)慣,學(xué)校對(duì)閱讀能手進(jìn)行了獎(jiǎng)勵(lì)表彰,計(jì)劃用2700元來購(gòu)買甲、乙、丙三種書籍共100本作為獎(jiǎng)品,已知甲、乙、丙三種書的價(jià)格比為223,甲種書每本20元.

1)求出乙、丙兩種書的每本各多少元?

2)若學(xué)校購(gòu)買甲種書的數(shù)量是乙種書的1.5倍,恰好用完計(jì)劃資金,求甲、乙、丙三種書各買了多少本?

3)在活動(dòng)中,同學(xué)們表現(xiàn)優(yōu)秀,學(xué)校決定提升獎(jiǎng)勵(lì)檔次,增加了245元的購(gòu)書款,在購(gòu)買書籍總數(shù)不變的情況下,求丙種書最多可以買多少本?

4)七(1)班閱讀氛圍濃厚,同伴之間交換書籍共享閱讀,已知甲種書籍共270頁,小明同學(xué)閱讀甲種書籍每天21頁,閱讀5天后,發(fā)現(xiàn)同伴比他看得快,為了和同伴及時(shí)交換書籍,接下來小明每天多讀了a頁(20a40),結(jié)果再用了b天讀完,求小明讀完整本書共用了多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】許多代數(shù)恒等式可以借助圖形的面積關(guān)系直觀表達(dá),如圖①,根據(jù)圖中面積關(guān)系可以得到:。

1)如圖②,根據(jù)圖中面積關(guān)系,寫出一個(gè)關(guān)于的等式   ;

2)利用(1)中的等式求解:,則   ;

3)小明用8個(gè)面積一樣大的長(zhǎng)方形(寬,長(zhǎng))拼圖,拼出了如圖甲、乙的兩種圖案;圖案甲是一個(gè)大的正方形,中間陰影部分是邊長(zhǎng)為3的小正方形;圖案乙是一個(gè)大的長(zhǎng)方形,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像與反比例函數(shù)的圖像交于點(diǎn)A24﹚、C4n﹚,交y軸于點(diǎn)B,交x軸于點(diǎn)D

1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;

2)連接OAOC,求△AOC的面積;

3)寫出使一次函數(shù)的值大于反比例函數(shù)的的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,將矩形折疊,使落在對(duì)角線上,折痕為,點(diǎn)落在點(diǎn) 處,若,則 ;

(2)小麗手中有一張矩形紙片,.她準(zhǔn)備按如下兩種方式進(jìn)行折疊:

①如圖2,點(diǎn)在這張矩形紙片的邊上,將紙片折疊,使點(diǎn)落在邊上的點(diǎn)處,折痕為,若,求的長(zhǎng);

②如圖3,點(diǎn)在這張矩形紙片的邊上,將紙片折疊,使落在射線上,折痕為,點(diǎn)分別落在,處,若,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,A1,0)、點(diǎn)By軸上,將三角形OAB沿x軸負(fù)方向平移,平移后的圖形為三角形DEC,且點(diǎn)C的坐標(biāo)為(-3,2).

(1)直接寫出點(diǎn)E的坐標(biāo) ;

(2)在四邊形ABCD中,點(diǎn)P從點(diǎn)B出發(fā),沿BCCD移動(dòng).若點(diǎn)P的速度為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)解決以下問題,并說明你的理由:

①當(dāng)t為多少秒時(shí),點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);

②在運(yùn)動(dòng)過程中的坐標(biāo)(用含t的式子表示)

③當(dāng)3秒<t<5秒時(shí),設(shè)∠CBP=,∠PAD=,∠BPA=,試問是否為定值,若是,求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在甲、乙兩名同學(xué)中選拔一人參加英語口語聽力大賽,在相同的測(cè)試條件下,兩人5次測(cè)試成績(jī)(單位:分)如下:

甲:79,81,82,85,83 乙:88,7990,81,72

回答下列問題:

1甲成績(jī)的平均數(shù)是  ,乙成績(jī)的平均數(shù)是  ;

2)求甲、乙兩名同學(xué)測(cè)試成績(jī)的方差S2S2

3)請(qǐng)你選擇一個(gè)角度來判斷選拔誰參加比賽更合適

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOBCOD均為等腰直角三角形,AOBCOD90°,點(diǎn)C、D分別在邊OAOB上的點(diǎn).連接AD,BC,點(diǎn)HBC中點(diǎn),連接OH

1)如圖1,求證:OHAD,OHAD;

2)將COD繞點(diǎn)O旋轉(zhuǎn)到圖2所示位置時(shí),⑴中結(jié)論是否仍成立?若成立,證明你的結(jié)論;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】發(fā)現(xiàn)任意三個(gè)連續(xù)的整數(shù)中,最大數(shù)與最小數(shù)這兩個(gè)數(shù)的平方差是4的倍數(shù);

驗(yàn)證:(1 的結(jié)果是4的幾倍?

2)設(shè)三個(gè)連續(xù)的整數(shù)中間的一個(gè)為n,計(jì)算最大數(shù)與最小數(shù)這兩個(gè)數(shù)的平方差,并說明它是4的倍數(shù);

延伸:說明任意三個(gè)連續(xù)的奇數(shù)中,最大的數(shù)與最小的數(shù)這兩個(gè)數(shù)的平方差是8的倍數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案