【題目】如圖,在△ABC中,AB=AC=5,BC=8,中線AD、CE相交于點F,則AF的長為_______.
【答案】2
【解析】
連接DE,由中線的性質(zhì)可知:AD⊥BC,BD=CD=4,由勾股定理得出AD=3,設(shè)AF=x,則DF=AD-AF=3-x,再推導(dǎo)出DE是△ABC的中位線,進而由相似三角形的判定證出△DEF∽△ACF,進而將相應(yīng)數(shù)據(jù)代入對應(yīng)線段成比例的公式解方程即可.
解:如圖,連接DE,
∵AB=AC=5,BC=8,AD是BC邊上的中線,
∴AD⊥BC,BD=CD=4,
在Rt△ABD中, ,
設(shè)AF=x,則DF=AD-AF=3-x,
∵CE是AB邊上的中線,
∴AE=BE,
∴DE是△ABC的中位線,
∴DE∥AC,DE=AC,
∴△DEF∽△ACF,
∴,
∴AF=2DF,
∴
解得:
∴AF=2.
故答案為:2
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖正比例函數(shù)y=k1x與反比例函數(shù)y=的圖象相交于A、B兩點,AC⊥x軸于點C,CD∥AB交y軸于點D,連接AD、BD,若S△ABD=6,則下列結(jié)論正確的是( 。
A.k1=﹣6B.k1=﹣3C.k2=﹣6D.k2=﹣12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,D是AC中點,直線OD與⊙O相交于E,F兩點,P是⊙O外一點,P在直線OD上,連接PA,PC,AF,且滿足∠PCA=∠ABC.
(1)求證:PA是⊙O的切線;
(2)證明:;
(3)若BC=8,tan∠AFP=,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,已知A(4,a),B(﹣2,﹣4)是一次函數(shù)y=k1x+b的圖象和反比例函數(shù)y=﹣的圖象的交點.
(1)求反比例函數(shù)和直線AB的解折式;
(2)將直線OA沿y軸向下平移m個單位后,得到直線l,設(shè)直線l與直線AB的交點為P,若S△OAP=2S△OAB,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年是新中國成立70周年,在“慶祝新中國成立70年華誕”主題教育活動月,深圳某學(xué)校組織開展了豐富多彩的活動,活動設(shè)置了“A:詩歌朗誦展演,B:歌舞表演,C:書畫作品展覽,D:手工作品展覽”四個專項活動,每個學(xué)生限選一個專項活動參與.為了解活動開展情況,學(xué)校隨機抽取了部分學(xué)生進行調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖所示的不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖:
(1)本次隨機調(diào)查的學(xué)生人數(shù)是 人;
(2)請你補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,“B”所在扇形的圓心角為 度.
(4)小濤和小華各自隨機參與其中的一個專項活動,請你用畫樹狀圖或列表的方式求他們恰好選中同一個專項活動的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市為了回慣顧客,計劃于周年店慶當(dāng)天舉行抽獎活動.凡是購物金額達(dá)到m元及以上的顧客,都將獲得抽獎機會.規(guī)則如下:在一個不透明袋子里裝有除數(shù)字標(biāo)記外其它完全相同的4個小球,數(shù)字標(biāo)記分別為“a” 、“b”、“c”、“0” (其中正整數(shù)a、b、c滿足a+b+c=30且a>15).顧客先隨機摸出一球后不放回,再摸出第二球,則兩球標(biāo)記的數(shù)字之和為該顧客所獲獎勵金額(單位:元)、經(jīng)調(diào)查發(fā)現(xiàn),每日前來購物的顧客中,購物金額及人數(shù)比例如下表所示:
購物金額x (單位:元) | 0<x<100 | 100≤x<200 | 200≤x<300 | x≥300 |
人數(shù)比例 |
現(xiàn)預(yù)計活動當(dāng)天購物人數(shù)將達(dá)到200人.
(1)在活動當(dāng)天,某顧客獲得抽獎機會,試用畫樹狀圖或列表的方法,求該顧客獲得a元獎勵金的概率;
(2)以每位抽獎顧客所獲獎勵金的平均數(shù)為決策依據(jù),超市設(shè)定獎勵總金額不得超過2000元,且盡可能讓更多的顧客參與抽獎活動,問m應(yīng)定為100元?200元?還是300元?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校用隨機抽樣的方法在九年級開展了“你是否喜歡網(wǎng)課”的調(diào)查,并將得到的數(shù)據(jù)整理成了以下統(tǒng)計圖(不完整).
(1)此次共調(diào)查了 名學(xué)生;
(2)請將條形統(tǒng)計圖補充完整;
(3)若該學(xué)校九年級共有300名學(xué)生,請你估計其中“非常喜歡”網(wǎng)課的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在信息快速發(fā)展的社會,“信息消費”已成為人們生活的重要組成部分.某高校組織課外小組在鄭州市的一個社區(qū)隨機抽取部分家庭,調(diào)查每月用于信息消費的金額,根據(jù)數(shù)據(jù)整理成如圖所示的不完整統(tǒng)計表和統(tǒng)計圖.已知A,B兩組戶數(shù)頻數(shù)直方圖的高度比為1:5.
月信息消費額分組統(tǒng)計表
組別 | 消費額(元) |
A | 10≤x<100 |
B | 100≤x<200 |
C | 20≤x<300 |
D | 300≤x<400 |
E | x≥400 |
請結(jié)合圖表中相關(guān)數(shù)據(jù)解答下列問題:
(1)這次接受調(diào)查的有 戶;
(2)在扇形統(tǒng)計圖中,“E”所對應(yīng)的圓心角的度數(shù)是 ;
(3)請你補全頻數(shù)直方圖;
(4)若該社區(qū)有2000戶住戶,請估計月信息消費額不少于200元的戶數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在三角形中,若有兩條中線互相垂直,則稱該三角形為中垂三角形.
(1)如圖(1),△ABC是中垂三角形,BD,AE分別是AC,BC邊上的中線,且BD⊥AE于點O,若∠BAE=45°,求證:△ABC是等腰三角形.
(2)如圖(2),在中垂三角形ABC中,AE,BD分別是邊BC,AC上的中線,且AE⊥BD于點O,猜想AB2,BC2,AC2之間的數(shù)量關(guān)系,并加以證明.
(3)如圖(3),四邊形ABCD是菱形,對角線AC,BD交于點O,點M,N分別是OA,OD的中點,連接BM,CN并延長,交于點E.
①求證:△BCE是中垂三角形;
②若,請直接寫出BE2+CE2的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com