(2013•寶坻區(qū)一模)如圖,在正方形ABCD中,CE=MN,∠MCE=35°,那么∠ANM等于( 。
分析:過B作BF∥MN交AD于F,則∠AFB=∠ANM,根據(jù)正方形的性質(zhì)得出∠A=∠EBC=90°,AB=BC,AD∥BC,推出四邊形BFNM是平行四邊形,得出BF=MN=CE,證Rt△ABF≌Rt△BCE,推出∠AFB=∠ECB即可.
解答:解:
過B作BF∥MN交AD于F,
則∠AFB=∠ANM,
∵四邊形ABCD是正方形,
∴∠A=∠EBC=90°,AB=BC,AD∥BC,
∴FN∥BM,BE∥MN,
∴四邊形BFNM是平行四邊形,
∴BF=MN,
∵CE=MN,
∴CE=BF,
在Rt△ABF和Rt△BCE中
BF=CE
AB=BC

∴Rt△ABF≌Rt△BCE(HL),
∴∠AFB=∠ECB=35°,
∴∠ANM=∠AFB=35°,
故選C.
點(diǎn)評:本題考查了平行四邊形的性質(zhì)和判定,全等三角形的性質(zhì)和判定,正方形的性質(zhì)的應(yīng)用,主要考查學(xué)生的推理能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寶坻區(qū)一模)已知:關(guān)于x的方程x2+(m-4)x-3(m-1)=0有兩個不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)拋物線C:y=-x2-(m-4)x+3(m-1)與x軸交于A、B兩點(diǎn).若m≤-1且直線l1y=-
m
2
x-1
經(jīng)過點(diǎn)A,求拋物線C的函數(shù)解析式;
(3)在(2)的條件下,直線l1y=-
m
2
x-1
繞著點(diǎn)A旋轉(zhuǎn)得到直線l2:y=kx+b,設(shè)直線l2與y軸交于點(diǎn)D,與拋物線C交于點(diǎn)M(M不與點(diǎn)A重合),當(dāng)
MA
AD
3
2
時,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寶坻區(qū)一模)若a=
50
-5
,則估計a的值所在的范圍是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寶坻區(qū)一模)下列四個圖形中哪些圖中的一個矩形是由另一個矩形按順時針方向旋轉(zhuǎn)90°后所形成的?(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寶坻區(qū)一模)化簡
3
-
3
(1-
3
)
的結(jié)果是
3
3

查看答案和解析>>

同步練習(xí)冊答案