如圖1,△ABC的邊BC在直線上,AC ⊥BC,且AC=BC;△EFP的邊FP也在直線上,邊EF與邊AC重合,且EF=FP.
(1)將△EFP沿直線向左平移到圖2的位置時,EP交AC于點Q,連結AP,BQ.猜想  BQ   與AP所滿足的數(shù)量關系和位置關系。(直接寫出結論)
AP           BQ,AP           BQ;   (4分)
(2)將△EFP沿直線向左平移到圖3的位置時,EP的延長線交AC的延長線于點Q,連結AP,BQ.你認為(1)中所猜想的BQ與AP的數(shù)量關系和位置關系還成立嗎?若成立,給出證明;若不成立,請說明理由.(6分)

(1)BQ=AP,BQ⊥AP.
(2)關系仍然成立:BQ=AP,BQ⊥AP.間解析

解析試題分析:(1)延長BQ交AP于點M,根據(jù)等腰直角三角板的每一個銳角都是45°可得∠EPF=45°,然后求出∠CQP=45°,根據(jù)等角對等邊的性質求出CQ=CP,然后利用邊角邊定理證明△BCQ與△ACP全等,再根據(jù)全等三角形對應邊相等,即可證明BQ=AP,對應角相等可得∠CBQ=∠CAP,又∠CBQ+∠BQC=90°,所以∠CAP+∠AQM=90°,從而得到BQ⊥AP;
(2)延長QB交AP于點M,根據(jù)等腰直角三角板的每一個銳角都是45°可得∠EPF=45°,根據(jù)對頂角相等得到∠CPQ=45°,然后求出∠CQP=45°,根據(jù)等角對等邊的性質求出CQ=CP,然后利用邊角邊定理證明△BCQ與△ACP全等,再根據(jù)全等三角形對應邊相等,即可證明BQ=AP,對應角相等可得∠BQC=∠APC,又∠CBQ+∠BQC=90°,所以∠PBM+∠APC=90°,從而得到BQ⊥AP.
考點:等腰直角三角形;全等三角形的判定與性質.
點評:本題要求熟練掌握等腰直角三角形的兩直角邊相等,每一個銳角都是45°的性質,全等三角形的判定與性質,題目不比較復雜但思路比較清晰,此類題目一般都是下一問繼續(xù)沿用第一問的證明思路進行求解.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正三角形ABC的邊長為a,D是BC的中點,P是AC邊上的點,連接PB和PD得到△PBD.求:
(1)當點P運動到AC的中點時,△PBD的周長;
(2)△PBD的周長的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正△ABC的邊長AB=2,以A為圓心的圓切BC于點D,交AB于點E,交AC于點F,則弧EF的長=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•高淳縣一模)如圖①,若點P是△ABC內或邊上一點,且∠BPC=2∠A,則稱點P是△ABC內∠A的二倍角點.
(1)如圖②,點O等邊△ABC的外心,連接OB、OC.
①求證:點O是△ABC內∠A的一個二倍角點;
②作△BOC的外接圓,求證:弧BOC上任意一點(B、C除外)都是△ABC內∠A的二倍角點.
(2)如圖③,在△ABC的邊AB上求作一點M,使點M是△ABC內∠A的一個二倍角點(要求用尺規(guī)作圖,保留作圖痕跡,并寫出作法).
(3)在任意三角形形內,是否存在一點P同時為該三角形內三個內角的二倍角點?請直接寫出結論,不必說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,以△ABC的邊AB、AC向外作等邊△ABE和△ACD,連接BD、CE.
(1)線段CE和BD有什么數(shù)量關系?證明你的結論.
(2)能否求出∠DFC的度數(shù)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,以△ABC的邊AB、AC為邊,向外作等邊△ABD和等邊△ACE,連接BE、CD相交于點F.
求證:(1)△DAC≌△BAE;
(2)BE=DC;
(3)求∠DFE的度數(shù).

查看答案和解析>>

同步練習冊答案