【題目】中,,,點(diǎn)為直線上一動點(diǎn)(點(diǎn)不與,重合),以為邊在右側(cè)作正方形,連接.
(1)觀察猜想:如圖1,當(dāng)點(diǎn)在線段上時(shí),
①與的位置關(guān)系為:______.②,,之間的數(shù)量關(guān)系為:______;(將結(jié)論直接寫在橫線上)
(2)數(shù)學(xué)思考:如圖2,當(dāng)點(diǎn)在線段的延長線上時(shí),(1)中的結(jié)論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.
(3)拓展延伸:如圖3,當(dāng)點(diǎn)在線段的延長線上時(shí),延長交于點(diǎn),連接.若已知,,請直接寫出的長.
【答案】觀察猜想:(1)①; ②;數(shù)學(xué)思考:(2)結(jié)論①仍然成立,見解析,結(jié)論②變?yōu)?/span>,見解析;拓展延伸:(3).
【解析】
(1)根據(jù)正方形的性質(zhì)證明△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;
(2)根據(jù)正方形的性質(zhì)證明△DAB≌△FAC,再根據(jù)等腰直角三角形的性質(zhì)即可求解;
(3)分別過點(diǎn)、作垂線,根據(jù)(1)(2)的結(jié)論,再證明,根據(jù)勾股定理即可求解.
解:(1)在正方形ADEF中,AD=AF,
∵∠BAC=∠DAF=90°,
∴∠BAD=∠CAF,故△DAB≌△FAC
∴∠B=∠ACF,∴∠ACB+∠ACF=90°,即
②∵△DAB≌△FAC
∴CF=BD,
∵BC=BD+CD,
∴BC=CF+CD
(2)結(jié)論①仍然成立,結(jié)論②變?yōu)?/span>.
證明:∵四邊形是正方形,
∴,,
∵,
∴,
∴.
又,
∴.
∴,,
∵,
∴.
設(shè)與交于點(diǎn),則,
在中,,
∴,
∴即
(3)分別過點(diǎn)、作垂線,類比(1)(2)結(jié)論可知,,,
又AD=DE,∠AND=∠DHE=90°,
∵∠NAD+∠ADN=90°,∠EDH+∠ADN=90°,
∴∠NAD=∠EDH
∴
∴,,,,
由勾股定理得
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的邊AB=3cm,AD=4cm,點(diǎn)E從點(diǎn)A出發(fā),沿射線AD移動,以CE為直徑作圓O,點(diǎn)F為圓O與射線BD的公共點(diǎn),連接EF、CF,過點(diǎn)E作EG⊥EF,EG與圓O相交于點(diǎn)G,連接CG.
(1)試說明四邊形EFCG是矩形;
(2)當(dāng)圓O與射線BD相切時(shí),點(diǎn)E停止移動,在點(diǎn)E移動的過程中,
①矩形EFCG的面積是否存在最大值或最小值?若存在,求出這個(gè)最大值或最小值;若不存在,說明理由;
②求點(diǎn)G移動路線的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(m≠0)的圖象在第一象限內(nèi)交于A(1,6),B(3,n)兩點(diǎn).
(1)求這兩個(gè)函數(shù)的表達(dá)式;
(2)根據(jù)圖象直接寫出kx+b﹣<0的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料
“一帶一路”建設(shè)將以政策溝通、設(shè)施聯(lián)通、貿(mào)易暢通、資金融通、民心相通為主要內(nèi)容,為沿線國家發(fā)展和世界經(jīng)濟(jì)注入新動力.中國與“一帶一路”沿線國家合作具有較好的基礎(chǔ).2012年中國與沿線國家的貨物貿(mào)易額占中國貨物貿(mào)易總額的24.8%,2013年中國與沿線國家的貨物貿(mào)易額占中國貨物貿(mào)易總額的25.0%.隨著“一帶一路”戰(zhàn)略的實(shí)施,中國與“一帶一路”沿線國家的貿(mào)易規(guī)模不斷擴(kuò)大,2014年,中國與沿線國家的貨物貿(mào)易額達(dá)到1.12萬億美元,占中國貨物貿(mào)易總額的26.1%.2015年,中國與沿線國家的貨物貿(mào)易額達(dá)到0.93萬億美元,占中國貨物貿(mào)易總額的25.3%.2016年,中國與沿線國家貿(mào)易額為0.95萬億美元,占中國貨物貿(mào)易總額的25.7%.“一帶一路”建設(shè)為我們打開了新思路,世界期待,為促進(jìn)世界經(jīng)濟(jì)增長、深化地區(qū)合作打造更堅(jiān)實(shí)的發(fā)展基礎(chǔ),更好地造福了各國人民.
根據(jù)以上材料解答下列問題:
(1)請你用統(tǒng)計(jì)圖將2012﹣2016年中國與“一帶一路”沿線國家的貨物貿(mào)易額占中國貨物貿(mào)易總額的百分比表示出來,并在圖中標(biāo)明相應(yīng)數(shù)據(jù);
(2)根據(jù)材料預(yù)估2017年中國與“一帶一路”沿線國家貿(mào)易額約為 萬億美元,你估計(jì)的理由是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從A城出發(fā)前往B城.在整個(gè)行程中,汽車離開A城的距離y與時(shí)刻t的對應(yīng)關(guān)系如圖所示,則下列結(jié)論錯誤的是( 。
A. A城和B城相距300km
B. 甲先出發(fā),乙先到達(dá)
C. 甲車的速度為60km/h,乙車的速度為100km/h
D. 6:00~7:30乙在甲前,7:30甲追上乙,7:30~9:00甲在乙前
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)戶承包荒山若干畝,今年水果總產(chǎn)量為18000 千克,此水果在市場上每千克售 a 元,在果園每千克售b 元( b a ),該農(nóng)戶將水果拉到市場出售平均每天出售1000 千克,需8 人幫忙,每人每天付工資 25 元,農(nóng)用車運(yùn)費(fèi)及其他各項(xiàng)稅費(fèi)平均每天100 元.
(1)分別用 a,b 表示兩種方式出售水果的收入;
(2)若 a1.3元, b1.1元,且兩種出售水果方式都在相同的時(shí)間內(nèi)售完全部水果,請你通過計(jì)算說明選擇哪種出售方式較好.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知直線 AB、CD 相交于點(diǎn) O,∠COE=90°
(1)若∠AOC=36°,求∠BOE 的度數(shù);
(2)若∠BOD:∠BOC=1:5,求∠AOE 的度數(shù).
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/13/1923292236627968/1924724835590144/STEM/dc8ee683cff64dfdb92368e07f9f9b9d.png]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知∠AOB=80°,OC是∠AOB內(nèi)的一條射線,OD,OE分別平分∠BOC和∠COA.
(1)求∠DOE的度數(shù);
(2)當(dāng)射線OC繞點(diǎn)O旋轉(zhuǎn)到OB的左側(cè)時(shí)如圖②(或旋轉(zhuǎn)到OA的右側(cè)時(shí)如圖③),OD,OE仍是∠BOC和∠COA的平分線,此時(shí)∠DOE的大小是否和(1)中的答案相同?若相同,請選取一種情況寫出你的求解過程;若不相同,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)的圖像與一次函數(shù)的圖像交于兩點(diǎn)A(1,3),B(n,-1).
⑴ k= ,n= ;
⑵ 求一次函數(shù)的表達(dá)式;
⑶ 結(jié)合圖像直接回答:不等式<mx+b解集是 ;
⑷ 求△AOB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com