【題目】如圖,二次函數(shù)的圖象與x軸的一個(gè)交點(diǎn)為B(4,0),另一個(gè)交點(diǎn)為A,且與y軸相交于C點(diǎn)

(1)求m的值及C點(diǎn)坐標(biāo);

(2)在直線BC上方的拋物線上是否存在一點(diǎn)M,使得它與B,C兩點(diǎn)構(gòu)成的三角形面積最大,若存在,求出此時(shí)M點(diǎn)坐標(biāo);若不存在,請簡要說明理由;

(3)P為拋物線上一點(diǎn),它關(guān)于直線BC的對稱點(diǎn)為Q

①當(dāng)四邊形PBQC為菱形時(shí),求點(diǎn)P的坐標(biāo);

②點(diǎn)P的橫坐標(biāo)為t(0t4),當(dāng)t為何值時(shí),四邊形PBQC的面積最大,請說明理由.

【答案】(1)m=4,C(0,4);(2)存在,M(2,6);(3)P(,)或P(,);當(dāng)t=2時(shí),S四邊形PBQC最大=16.

【解析】

試題分析:(1)用待定系數(shù)法求出拋物線解析式;

(2)先判斷出面積最大時(shí),平移直線BC的直線和拋物線只有一個(gè)交點(diǎn),從而求出點(diǎn)M坐標(biāo);

(3)①先判斷出四邊形PBQC時(shí)菱形時(shí),點(diǎn)P是線段BC的垂直平分線,利用該特殊性建立方程求解;

②先求出四邊形PBCQ的面積與t的函數(shù)關(guān)系式,從而確定出它的最大值.

試題解析:(1)將B(4,0)代入,解得,m=4,二次函數(shù)解析式為,令x=0,得y=4,C(0,4);

(2)存在,理由:B(4,0),C(0,4),直線BC解析式為y=﹣x+4,當(dāng)直線BC向上平移b單位后和拋物線只有一個(gè)公共點(diǎn)時(shí),MBC面積最大,,,∴△=16﹣4b=0,b=4,M(2,6)

(3)①如圖,點(diǎn)P在拋物線上,設(shè)P(m,),當(dāng)四邊形PBQC是菱形時(shí),點(diǎn)P在線段BC的垂直平分線上,B(4,0),C(0,4)線段BC的垂直平分線的解析式為y=x,m=,m=,P(,)或P(,);

②如圖,設(shè)點(diǎn)P(t,),過點(diǎn)P作y軸的平行線l,過點(diǎn)C作l的垂線,點(diǎn)D在直線BC上,D(t,﹣t+4),PD=﹣(﹣t+4)=,BE+CF=4,S四邊形PBQC=2S△PDC=2(S△PCD+S△BD)=2(PD×CF+PD×BE)=4PD==,0t4,當(dāng)t=2時(shí),S四邊形PBQC最大=16

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公園開園第二天,參觀人數(shù)達(dá)214000人,將該數(shù)用科學(xué)記數(shù)法表示用科學(xué)記數(shù)法表示214000_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法不正確的是(

A. 零既不是正數(shù)也不是負(fù)數(shù) B. 一個(gè)負(fù)數(shù)的絕對值是它的相反數(shù)

C. 兩個(gè)負(fù)數(shù),絕對值大的反而小 D. 互為倒數(shù)的兩數(shù)相加得零

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:1-2-3+4+5-6-7+8+…+2005-2006-2007+2008等于 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)統(tǒng)計(jì)分析2019年中國互聯(lián)網(wǎng)行業(yè)發(fā)展趨勢,3年內(nèi)智能手機(jī)用戶將達(dá)到332億戶,用科學(xué)記數(shù)法表示332億為_______戶.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ab = 0, a,b ( )

A. 都為0 B. 都不為0 C. 至少有一個(gè)為0 D. 無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b是方程x2+x﹣2018=0的兩個(gè)實(shí)數(shù)根,則(a﹣1)(b﹣1)的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各組線段中,能成比例線段的一組是(

A. 2,3,4,6 B. 2,3,4,5 C. 2,3,5,7 D. 3,4,5,6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A,點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)B坐標(biāo)為(6,0),點(diǎn)C坐標(biāo)為(0,6),點(diǎn)D是拋物線的頂點(diǎn),過點(diǎn)D作x軸的垂線,垂足為E,連接BD.

(1)求拋物線的解析式及點(diǎn)D的坐標(biāo);

(2)點(diǎn)F是拋物線上的動點(diǎn),當(dāng)FBA=BDE時(shí),求點(diǎn)F的坐標(biāo);

(3)若點(diǎn)M是拋物線上的動點(diǎn),過點(diǎn)M作MNx軸與拋物線交于點(diǎn)N,點(diǎn)P在x軸上,點(diǎn)Q在平面內(nèi),以線段MN為對角線作正方形MPNQ,請直接寫出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案