(1)已知 x2-6x+9+|y+1|=0,求(x+2y)2(x-2y)2-(x-2y)(x2+4y2)(x+2y)的值.
(2)觀察下列各式的規(guī)律:
1×2×3×4+1=(1×4+1)2;
2×3×4×5+1=(2×5+1)2;
3×4×5×6+1=(3×6+1)2;

(1)寫出第五個(gè)式子:
5×6×7×8+1=(5×8+1)2
5×6×7×8+1=(5×8+1)2

(2)寫出第n個(gè)式子,并用所學(xué)知識(shí)說明理由.
分析:(1)原式利用平方差公式化簡,去括號(hào)合并得到最簡結(jié)果,利用非負(fù)數(shù)的性質(zhì)求出x與y的值,代入計(jì)算即可求出值;
(2)根據(jù)一系列等式,得出第五個(gè)等式;歸納總結(jié)得出一般性規(guī)律,表示出第n個(gè)等式即可.
解答:解:(1)原式=(x2-4y22-(x2+4y2)(x2-4y2)=x4-8x2y2+16y4-x4+16y4=32y4-8x2y2,
∵x2-6x+9+|y+1|=(x-3)2+|y+1|=0,∴x=3,y=-1,
原式=32-72=-40;
(2)根據(jù)題中的一系列等式得:第五個(gè)式子為5×6×7×8+1=(5×8+1)2;
歸納總結(jié)得到第n個(gè)等式為:n(n+1)(n+2)(n+3)+1=[n(n+3)+1]2
故答案為:5×6×7×8+1=(5×8+1)2
點(diǎn)評(píng):此題考查了整式的混合運(yùn)算-化簡求值,涉及的知識(shí)有:去括號(hào)法則,以及合并同類項(xiàng)法則,弄清題中的規(guī)律是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知x2-4x+y2-6y+13=0,求x、y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知
x
2
-
x
3
=1
,那么x2-16=
20
20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知
x2-1
+
4y+1
=0,求
2001x
+y2000的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

定義新運(yùn)算:(a,b)?(c,d)=(ac,bd),(a,b)⊕(c,d)=(a+c,b+d)(a,b)*(c,d)=a2+c2-bd
(1)求(1,2)*(3,-4)的值;
(2)已知(1,2)?(p,q)=(2,-4),分別求出p與q的值;
(3)在(2)的條件下,求(1,2)⊕(p,q)的結(jié)果;
(4)已知x2+2xy+y2=5,x2-2xy+y2=1,求(x,5)*(y,xy)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先閱讀后解題
若m2+2m+n2-6n+10=0,求m和n的值.
解:m2+2m+1+n2-6n+9=0
即(m+1)2+(n-3)2=0
∵(m+1)2≥0,(n-3)2≥0
∴(m+1)2=0,(n-3)2=0
∴m+1=0,n-3=0
∴m=-1,n=3
利用以上解法,解下列問題:
已知 x2+5y2-4xy+2y+1=0,求x和y的值.

查看答案和解析>>

同步練習(xí)冊答案