【題目】不解方程,判斷方程2x2+3x﹣4=0的根的情況是(
A.有兩個相等的實數(shù)根
B.有兩個不相等的實數(shù)根
C.只有一個實數(shù)根
D.沒有實數(shù)根

【答案】B
【解析】解:∵△=b2﹣4ac=9﹣4×2×(﹣4)=41>0,∴方程有兩個不相等的實數(shù)根,
故選B.
【考點精析】解答此題的關(guān)鍵在于理解求根公式的相關(guān)知識,掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時,一元二次方程有2個不相等的實數(shù)根2、當(dāng)△=0時,一元二次方程有2個相同的實數(shù)根3、當(dāng)△<0時,一元二次方程沒有實數(shù)根.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,禁止捕魚期間,某海上稽查隊在某海域巡邏,上午某一時刻在A處接到指揮部通知,在他們東北方向距離12海里的B處有一艘捕魚船,正在沿南偏東75°方向以每小時10海里的速度航行,稽查隊員立即乘坐巡邏船以每小時14海里的速度沿北偏東某一方向出發(fā),在C處成功攔截捕魚船,求巡邏船從出發(fā)到成功攔截捕魚船所用的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對面積為1的△ABC逐次進(jìn)行以下操作:第一次操作,分別延長AB,BC,CA至點A1 , B1 , C1 , 使得A1B=2AB,B1C=2BC,C1A=2CA,順次連接A1 , B1 , C1 , 得到△A1B1C1 , 記其面積為S1;第二次操作,分別延長A1B1 , B1C1 , C1A1至點A2 , B2 , C2 , 使得A2B1=2A1B1 , B2C1=2B1C1 , C2A1=2C1A1 , 順次連接A2 , B2 , C2 , 得到△A2B2C2 , 記其面積為S2 , 則S2。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題
(1)計算:
(2)(﹣a23﹣(﹣a32+2a5(﹣a)
(3)(2a+b)(2a-b)+3(2a-b) 2+(-3a)(4a-3b)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BD平分∠ABC,點F在AB上,點G在AC上,連接FG、FC,F(xiàn)C與BD相交于點H,如果∠GFH與∠BHC互補.求證:∠1=∠2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若 、 互為相反數(shù), 、 互為倒數(shù), 的絕對值為2.
(1)分別直接寫出 , , 的值;
(2)求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把正整數(shù)1,2,3,4,…,2017排列成如下圖所示的一個數(shù)表:

(1)用一正方形在表中隨意框住4個數(shù),把其中最小的數(shù)記為 ,另三個數(shù)用含 的式子表示出來,從大到小依次是 , ,
(2)當(dāng)被框住的4個數(shù)之和等于416時, 的值是多少?
(3)被框住的4個數(shù)之和能否等于622?如果能,請求出此時 的值;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】北京等5個城市的國際標(biāo)準(zhǔn)時間(單位:小時)可在數(shù)軸上表示如下:

如果將兩地國際標(biāo)準(zhǔn)時間的差簡稱為時差,那么下列說法中正確的是(

A. 漢城與紐約的時差為13小時 B. 北京與紐約的時差為13小時

C. 北京與紐約的時差為14小時 D. 北京與多倫多的時差為14小時

查看答案和解析>>

同步練習(xí)冊答案