【題目】某廠為了檢驗甲、乙兩車間生產(chǎn)的同一種零件的直徑的合格情況,隨機各抽取了10個樣品進行檢測,已知零件的直徑均為整數(shù),整理數(shù)據(jù)如下:(單位:)
170~174 | 175~179 | 180~184 | 185~189 | |
甲車間 | 1 | 3 | 4 | 2 |
乙車間 | 0 | 6 | 2 | 2 |
(1)分別計算甲、乙兩車間生產(chǎn)的零件直徑的平均數(shù);
(2)直接說出甲、乙兩車間生產(chǎn)的零件直徑的中位數(shù)都在哪個小組內(nèi),眾數(shù)是否在其相應(yīng)的小組內(nèi)?
(3)若該零件的直徑在的范圍內(nèi)為合格,甲、乙兩車間哪一個車間生產(chǎn)的零件直徑合格率高?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2014年1月,國家發(fā)改委出臺指導(dǎo)意見,要求2015年底前,所有城市原則上全面實行居民階梯水價制度.小明為了解市政府調(diào)整水價方案的社會反響,隨機訪問了自己居住小區(qū)的部分居民,就“每月每戶的用水量”和“調(diào)價對用水行為改變”兩個問題進行調(diào)查,并把調(diào)查結(jié)果整理繪制成下面的統(tǒng)計圖(圖1,圖2).
小明發(fā)現(xiàn)每月每戶的用水量在5m3-35m3之間,有8戶居民對用水價格調(diào)價漲幅抱無所謂,不會考慮用水方式的改變,根據(jù)小明繪制的圖表和發(fā)現(xiàn)的信息,完成下列問題:
(Ⅰ)n= ,小明調(diào)查了 戶居民,并補全圖2;
(Ⅱ)每月每戶用水量的中位數(shù)和眾數(shù)分別落在什么范圍?
(Ⅲ)如果小明所在小區(qū)有1800戶居民,請你估計“視調(diào)價漲幅采取相應(yīng)的用水方式改變”的居民戶數(shù)有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個邊長分別為a,b(a>b)的正方形連在一起,三點C,B,F(xiàn)在同一直線上,反比例函數(shù)y=在第一象限的圖象經(jīng)過小正方形右下頂點E.若OB2﹣BE2=10,則k的值是( 。
A. 3 B. 4 C. 5 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】說明理由
如圖,∠1+∠2=230°,b∥c, 則∠1、∠2、∠3、∠4各是多少度?
解:∵ ∠1=∠2 (_________________________)
∠1+∠2=230°
∴∠1 =∠2 =________(填度數(shù))
∵ b∥c
∴∠4 =∠2= ________(填度數(shù))
( )
∠2 +∠3 =180° ( )
∴∠3 =180°-∠2 =_________(填度數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:A=2a2+3ab-2a-1,B=-a2+ab+1.
(1)若 |a+1| b- 22 0 ,求4A-(3A-2B)的值;
(2)若(1)中代數(shù)式的值與a的取值無關(guān),求b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知∠MON=140°,∠AOC與∠BOC互余,OC平分∠MOB,
(1)在圖1中,若∠AOC=40°,則∠BOC= °,∠NOB= °.
(2)在圖1中,設(shè)∠AOC=α,∠NOB=β,請?zhí)骄?/span>α與β之間的數(shù)量關(guān)系( 必須寫出推理的主要過程,但每一步后面不必寫出理由);
(3)在已知條件不變的前提下,當(dāng)∠AOB繞著點O順時針轉(zhuǎn)動到如圖2的位置,此時α與β之間的數(shù)量關(guān)系是否還成立?若成立,請說明理由;若不成立,請直接寫出此時α與β之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】電話計費問題,下表中有兩種移動電話計費方式:
溫馨揭示:方式一:月使用費固定收(月收費:38元/月);主叫不超限定時間不再收費(80分鐘以內(nèi),包括80分鐘);主叫超時部分加收超時費(超過部分0.15元/);被叫免費。
方式二:月使用費0元(無月租費);主叫限定時間0分鐘;主叫每分鐘0.35元/;被叫免費。
(1)設(shè)一個月內(nèi)用移動電話主叫時間為,方式一計費元,方式二計費元。寫出和關(guān)于的函數(shù)關(guān)系式。
(2)在平面直角坐標(biāo)系中畫出(1)中的兩個函數(shù)圖象,記兩函數(shù)圖象交點為點,則點的坐標(biāo)為_____________________(直接寫出坐標(biāo),并在圖中標(biāo)出點)。
(3)根據(jù)(2)中函數(shù)圖象,請直接寫出如何根據(jù)每月主叫時間選擇省錢的計費方式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖∠AOB是直角,在∠AOB外作射線OC,OM平分∠AOC,ON平分∠BOC.
(1)若∠AOC=38°,求∠MON的度數(shù);
(2)若∠AOC=,試說明∠MON的大小與無關(guān).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】知識鏈接:
“轉(zhuǎn)化、化歸思想”是數(shù)學(xué)學(xué)習(xí)中常用的一種探究新知、解決問題的基本的數(shù)學(xué)思想方法,通過“轉(zhuǎn)化、化歸”通?梢詫崿F(xiàn)化未知為已知,化復(fù)雜為簡單,從而使問題得以解決.
(1)問題背景:已知:△ABC.試說明:∠A+∠B+∠C=180°.
問題解決:(填出依據(jù))
解:(1)如圖①,延長AB到E,過點B作BF∥AC.
∵BF∥AC(作圖)
∴∠1=∠C( )
∠2=∠A( )
∵∠2+∠ABC+∠1=180°(平角的定義)
∴∠A+∠ABC+∠C=180°(等量代換)
小結(jié)反思:本題通過添加適當(dāng)?shù)妮o助線,把三角形的三個角之和轉(zhuǎn)化成了一個平角,利用平角的定義,說明了數(shù)學(xué)上的一個重要結(jié)論“三角形的三個內(nèi)角和等于180°.”
(2)類比探究:請同學(xué)們參考圖②,模仿(1)的解決過程試說明“三角形的三個內(nèi)角和等于180°”
(3)拓展探究:如圖③,是一個五邊形,請直接寫出五邊形ABCDE的五個內(nèi)角之和∠A+∠B+∠C+∠D+∠E= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com